示例#1
0
def export(model, args, f, export_params=True, verbose=False, training=False,
           input_names=None, output_names=None, aten=False, export_raw_ir=False,
           operator_export_type=None, opset_version=None, _retain_param_name=True,
           do_constant_folding=False, example_outputs=None, strip_doc_string=True, dynamic_axes=None):
    r"""
    Export a model into ONNX format.  This exporter runs your model
    once in order to get a trace of its execution to be exported;
    at the moment, it supports a limited set of dynamic models (e.g., RNNs.)
    See also: :ref:`onnx-export`
    Arguments:
        model (torch.nn.Module): the model to be exported.
        args (tuple of arguments): the inputs to
            the model, e.g., such that ``model(*args)`` is a valid
            invocation of the model.  Any non-Tensor arguments will
            be hard-coded into the exported model; any Tensor arguments
            will become inputs of the exported model, in the order they
            occur in args.  If args is a Tensor, this is equivalent
            to having called it with a 1-ary tuple of that Tensor.
            (Note: passing keyword arguments to the model is not currently
            supported.  Give us a shout if you need it.)
        f: a file-like object (has to implement fileno that returns a file descriptor)
            or a string containing a file name.  A binary Protobuf will be written
            to this file.
        export_params (bool, default True): if specified, all parameters will
            be exported.  Set this to False if you want to export an untrained model.
            In this case, the exported model will first take all of its parameters
            as arguments, the ordering as specified by ``model.state_dict().values()``
        verbose (bool, default False): if specified, we will print out a debug
            description of the trace being exported.
        training (bool, default False): export the model in training mode.  At
            the moment, ONNX is oriented towards exporting models for inference
            only, so you will generally not need to set this to True.
        input_names(list of strings, default empty list): names to assign to the
            input nodes of the graph, in order
        output_names(list of strings, default empty list): names to assign to the
            output nodes of the graph, in order
        aten (bool, default False): [DEPRECATED. use operator_export_type] export the
            model in aten mode. If using aten mode, all the ops original exported
            by the functions in symbolic_opset<version>.py are exported as ATen ops.
        export_raw_ir (bool, default False): [DEPRECATED. use operator_export_type]
            export the internal IR directly instead of converting it to ONNX ops.
        operator_export_type (enum, default OperatorExportTypes.ONNX):
            OperatorExportTypes.ONNX: all ops are exported as regular ONNX ops.
            OperatorExportTypes.ONNX_ATEN: all ops are exported as ATen ops.
            OperatorExportTypes.ONNX_ATEN_FALLBACK: if symbolic is missing,
                                                    fall back on ATen op.
            OperatorExportTypes.RAW: export raw ir.
        opset_version (int, default is 9): by default we export the model to the
            opset version of the onnx submodule. Since ONNX's latest opset may
            evolve before next stable release, by default we export to one stable
            opset version. Right now, supported stable opset version is 9.
            The opset_version must be _onnx_master_opset or in _onnx_stable_opsets
            which are defined in torch/onnx/symbolic_helper.py
        do_constant_folding (bool, default False): If True, the constant-folding
            optimization is applied to the model during export. Constant-folding
            optimization will replace some of the ops that have all constant
            inputs, with pre-computed constant nodes.
        example_outputs (tuple of Tensors, default None): example_outputs must be provided
            when exporting a ScriptModule or TorchScript Function.
        strip_doc_string (bool, default True): if True, strips the field
            "doc_string" from the exported model, which information about the stack
            trace.
        example_outputs: example outputs of the model that is being exported.
        dynamic_axes (dict<string, dict<int, string>> or dict<string, list(int)>, default empty dict):
            a dictionary to specify dynamic axes of input/output, such that:
            - KEY:  input and/or output names
            - VALUE: index of dynamic axes for given key and potentially the name to be used for
            exported dynamic axes. In general the value is defined according to one of the following
            ways or a combination of both:
            (1). A list of integers specifiying the dynamic axes of provided input. In this scenario
            automated names will be generated and applied to dynamic axes of provided input/output
            during export.
            OR (2). An inner dictionary that specifies a mapping FROM the index of dynamic axis in
            corresponding input/output TO the name that is desired to be applied on such axis of
            such input/output during export.
            Example. if we have the following shape for inputs and outputs:
                shape(input_1) = ('b', 3, 'w', 'h')
                and shape(input_2) = ('b', 4)
                and shape(output)  = ('b', 'd', 5)

            Then dynamic axes can be defined either as:
                (a). ONLY INDICES:
                    dynamic_axes = {'input_1':[0, 2, 3], 'input_2':[0], 'output':[0, 1]}

                    where automatic names will be generated for exported dynamic axes

                (b). INDICES WITH CORRESPONDING NAMES:
                    dynamic_axes = {'input_1':{0:'batch', 1:'width', 2:'height'},
                    'input_2':{0:'batch'},
                    'output':{0:'batch', 1:'detections'}

                    where provided names will be applied to exported dynamic axes

                (c). MIXED MODE OF (a) and (b)
                    dynamic_axes = {'input_1':[0, 2, 3], 'input_2':{0:'batch'}, 'output':[0,1]}
    """

    from torch.onnx import utils
    return utils.export(model, args, f, export_params, verbose, training,
                        input_names, output_names, aten, export_raw_ir,
                        operator_export_type, opset_version, _retain_param_name,
                        do_constant_folding, example_outputs,
                        strip_doc_string, dynamic_axes)
示例#2
0
def export(*args, **kwargs):
    from torch.onnx import utils
    return utils.export(*args, **kwargs)
示例#3
0
def export(model,
           args,
           f,
           export_params=True,
           verbose=False,
           training=TrainingMode.EVAL,
           input_names=None,
           output_names=None,
           operator_export_type=OperatorExportTypes.ONNX,
           opset_version=None,
           do_constant_folding=True,
           dynamic_axes=None,
           keep_initializers_as_inputs=None,
           custom_opsets=None,
           export_modules_as_functions=False):
    r"""
    Exports a model into ONNX format. If ``model`` is not a
    :class:`torch.jit.ScriptModule` nor a :class:`torch.jit.ScriptFunction`, this runs
    ``model`` once in order to convert it to a TorchScript graph to be exported
    (the equivalent of :func:`torch.jit.trace`). Thus this has the same limited support
    for dynamic control flow as :func:`torch.jit.trace`.

    Args:
        model (torch.nn.Module, torch.jit.ScriptModule or torch.jit.ScriptFunction):
            the model to be exported.
        args (tuple or torch.Tensor):

            args can be structured either as:

            1. ONLY A TUPLE OF ARGUMENTS::

                args = (x, y, z)

            The tuple should contain model inputs such that ``model(*args)`` is a valid
            invocation of the model. Any non-Tensor arguments will be hard-coded into the
            exported model; any Tensor arguments will become inputs of the exported model,
            in the order they occur in the tuple.

            2. A TENSOR::

                args = torch.Tensor([1])

            This is equivalent to a 1-ary tuple of that Tensor.

            3. A TUPLE OF ARGUMENTS ENDING WITH A DICTIONARY OF NAMED ARGUMENTS::

                args = (x,
                        {'y': input_y,
                         'z': input_z})

            All but the last element of the tuple will be passed as non-keyword arguments,
            and named arguments will be set from the last element. If a named argument is
            not present in the dictionary, it is assigned the default value, or None if a
            default value is not provided.

            .. note::
                If a dictionary is the last element of the args tuple, it will be
                interpreted as containing named arguments. In order to pass a dict as the
                last non-keyword arg, provide an empty dict as the last element of the args
                tuple. For example, instead of::

                    torch.onnx.export(
                        model,
                        (x,
                         # WRONG: will be interpreted as named arguments
                         {y: z}),
                        "test.onnx.pb")

                Write::

                    torch.onnx.export(
                        model,
                        (x,
                         {y: z},
                         {}),
                        "test.onnx.pb")

        f: a file-like object (such that ``f.fileno()`` returns a file descriptor)
            or a string containing a file name.  A binary protocol buffer will be written
            to this file.
        export_params (bool, default True): if True, all parameters will
            be exported. Set this to False if you want to export an untrained model.
            In this case, the exported model will first take all of its parameters
            as arguments, with the ordering as specified by ``model.state_dict().values()``
        verbose (bool, default False): if True, prints a description of the
            model being exported to stdout. In addition, the final ONNX graph will include the
            field ``doc_string``` from the exported model which mentions the source code locations
            for ``model``.
        training (enum, default TrainingMode.EVAL):
            * ``TrainingMode.EVAL``: export the model in inference mode.
            * ``TrainingMode.PRESERVE``: export the model in inference mode if model.training is
              False and in training mode if model.training is True.
            * ``TrainingMode.TRAINING``: export the model in training mode. Disables optimizations
              which might interfere with training.
        input_names (list of str, default empty list): names to assign to the
            input nodes of the graph, in order.
        output_names (list of str, default empty list): names to assign to the
            output nodes of the graph, in order.
        operator_export_type (enum, default OperatorExportTypes.ONNX):

            * ``OperatorExportTypes.ONNX``: Export all ops as regular ONNX ops
              (in the default opset domain).
            * ``OperatorExportTypes.ONNX_FALLTHROUGH``: Try to convert all ops
              to standard ONNX ops in the default opset domain. If unable to do so
              (e.g. because support has not been added to convert a particular torch op to ONNX),
              fall back to exporting the op into a custom opset domain without conversion. Applies
              to `custom ops <https://pytorch.org/tutorials/advanced/torch_script_custom_ops.html>`_
              as well as ATen ops. For the exported model to be usable, the runtime must support
              these non-standard ops.
            * ``OperatorExportTypes.ONNX_ATEN``: All ATen ops (in the TorchScript namespace "aten")
              are exported as ATen ops (in opset domain "org.pytorch.aten").
              `ATen <https://pytorch.org/cppdocs/#aten>`_ is PyTorch's built-in tensor library, so
              this instructs the runtime to use PyTorch's implementation of these ops.

              .. warning::

                Models exported this way are probably runnable only by Caffe2.

              This may be useful if the numeric differences in implementations of operators are
              causing large differences in behavior between PyTorch and Caffe2 (which is more
              common on untrained models).

            * ``OperatorExportTypes.ONNX_ATEN_FALLBACK``: Try to export each ATen op
              (in the TorchScript namespace "aten") as a regular ONNX op. If we are unable to do so
              (e.g. because support has not been added to convert a particular torch op to ONNX),
              fall back to exporting an ATen op. See documentation on OperatorExportTypes.ONNX_ATEN for
              context.
              For example::

                graph(%0 : Float):
                  %3 : int = prim::Constant[value=0]()
                  # conversion unsupported
                  %4 : Float = aten::triu(%0, %3)
                  # conversion supported
                  %5 : Float = aten::mul(%4, %0)
                  return (%5)

              Assuming ``aten::triu`` is not supported in ONNX, this will be exported as::

                graph(%0 : Float):
                  %1 : Long() = onnx::Constant[value={0}]()
                  # not converted
                  %2 : Float = aten::ATen[operator="triu"](%0, %1)
                  # converted
                  %3 : Float = onnx::Mul(%2, %0)
                  return (%3)

              If PyTorch was built with Caffe2 (i.e. with ``BUILD_CAFFE2=1``), then
              Caffe2-specific behavior will be enabled, including special support
              for ops are produced by the modules described in
              `Quantization <https://pytorch.org/docs/stable/quantization.html>`_.

              .. warning::

                Models exported this way are probably runnable only by Caffe2.

        opset_version (int, default 9): The version of the
            `default (ai.onnx) opset <https://github.com/onnx/onnx/blob/master/docs/Operators.md>`_
            to target. Must be >= 7 and <= 15.
        do_constant_folding (bool, default True): Apply the constant-folding optimization.
            Constant-folding will replace some of the ops that have all constant inputs
            with pre-computed constant nodes.
        dynamic_axes (dict<string, dict<int, string>> or dict<string, list(int)>, default empty dict):

            By default the exported model will have the shapes of all input and output tensors
            set to exactly match those given in ``args``. To specify axes of tensors as
            dynamic (i.e. known only at run-time), set ``dynamic_axes`` to a dict with schema:

            * KEY (str): an input or output name. Each name must also be provided in ``input_names`` or
              ``output_names``.
            * VALUE (dict or list): If a dict, keys are axis indices and values are axis names. If a
              list, each element is an axis index.

            For example::

                class SumModule(torch.nn.Module):
                    def forward(self, x):
                        return torch.sum(x, dim=1)

                torch.onnx.export(SumModule(), (torch.ones(2, 2),), "onnx.pb",
                                  input_names=["x"], output_names=["sum"])

            Produces::

                input {
                  name: "x"
                  ...
                      shape {
                        dim {
                          dim_value: 2  # axis 0
                        }
                        dim {
                          dim_value: 2  # axis 1
                ...
                output {
                  name: "sum"
                  ...
                      shape {
                        dim {
                          dim_value: 2  # axis 0
                ...

            While::

                torch.onnx.export(SumModule(), (torch.ones(2, 2),), "onnx.pb",
                                  input_names=["x"], output_names=["sum"],
                                  dynamic_axes={
                                      # dict value: manually named axes
                                      "x": {0: "my_custom_axis_name"},
                                      # list value: automatic names
                                      "sum": [0],
                                  })

            Produces::

                input {
                  name: "x"
                  ...
                      shape {
                        dim {
                          dim_param: "my_custom_axis_name"  # axis 0
                        }
                        dim {
                          dim_value: 2  # axis 1
                ...
                output {
                  name: "sum"
                  ...
                      shape {
                        dim {
                          dim_param: "sum_dynamic_axes_1"  # axis 0
                ...

        keep_initializers_as_inputs (bool, default None): If True, all the
            initializers (typically corresponding to parameters) in the
            exported graph will also be added as inputs to the graph. If False,
            then initializers are not added as inputs to the graph, and only
            the non-parameter inputs are added as inputs.
            This may allow for better optimizations (e.g. constant folding) by
            backends/runtimes.

            If ``opset_version < 9``, initializers MUST be part of graph
            inputs and this argument will be ignored and the behavior will be
            equivalent to setting this argument to True.

            If None, then the behavior is chosen automatically as follows:

            * If ``operator_export_type=OperatorExportTypes.ONNX``, the behavior is equivalent
              to setting this argument to False.
            * Else, the behavior is equivalent to setting this argument to True.

        custom_opsets (dict<str, int>, default empty dict): A dict with schema:

            * KEY (str): opset domain name
            * VALUE (int): opset version

            If a custom opset is referenced by ``model`` but not mentioned in this dictionary,
            the opset version is set to 1. Only custom opset domain name and version should be
            indicated through this argument.

        export_modules_as_functions (bool or set of type of nn.Module, default False): Flag to enable
            exporting all ``nn.Module`` forward calls as local functions in ONNX. Or a set to indicate the
            particular types of modules to export as local functions in ONNX.
            This feature requires ``opset_version`` >= 15, otherwise the export will fail. This is because
            ``opset_version`` < 15 implies IR version < 8, which means no local function support.

            * ``False``(default): export ``nn.Module`` forward calls as fine grained nodes.
            * ``True``: export all ``nn.Module`` forward calls as local function nodes.
            * Set of type of nn.Module: export ``nn.Module`` forward calls as local function nodes,
              only if the type of the ``nn.Module`` is found in the set.

    Raises:
      CheckerError: If the ONNX checker detects an invalid ONNX graph. Will still export the
        model to the file ``f`` even if this is raised.
    """

    from torch.onnx import utils
    return utils.export(model, args, f, export_params, verbose, training,
                        input_names, output_names, operator_export_type,
                        opset_version, do_constant_folding, dynamic_axes,
                        keep_initializers_as_inputs, custom_opsets,
                        export_modules_as_functions)
示例#4
0
def export(model,
           args,
           f,
           export_params=True,
           verbose=False,
           training=TrainingMode.EVAL,
           input_names=None,
           output_names=None,
           aten=False,
           export_raw_ir=False,
           operator_export_type=None,
           opset_version=None,
           _retain_param_name=True,
           do_constant_folding=True,
           example_outputs=None,
           strip_doc_string=True,
           dynamic_axes=None,
           keep_initializers_as_inputs=None,
           custom_opsets=None,
           enable_onnx_checker=True,
           use_external_data_format=False):
    r"""
    Export a model into ONNX format.  This exporter runs your model
    once in order to get a trace of its execution to be exported;
    at the moment, it supports a limited set of dynamic models (e.g., RNNs.)

    Arguments:
        model (torch.nn.Module): the model to be exported.
        args (tuple of arguments): the inputs to
            the model, e.g., such that ``model(*args)`` is a valid
            invocation of the model.  Any non-Tensor arguments will
            be hard-coded into the exported model; any Tensor arguments
            will become inputs of the exported model, in the order they
            occur in args.  If args is a Tensor, this is equivalent
            to having called it with a 1-ary tuple of that Tensor.
            (Note: passing keyword arguments to the model is not currently
            supported.  Give us a shout if you need it.)
        f: a file-like object (has to implement fileno that returns a file descriptor)
            or a string containing a file name.  A binary Protobuf will be written
            to this file.
        export_params (bool, default True): if specified, all parameters will
            be exported.  Set this to False if you want to export an untrained model.
            In this case, the exported model will first take all of its parameters
            as arguments, the ordering as specified by ``model.state_dict().values()``
        verbose (bool, default False): if specified, we will print out a debug
            description of the trace being exported.
        training (enum, default TrainingMode.EVAL):
            TrainingMode.EVAL: export the model in inference mode.
            TrainingMode.PRESERVE: export the model in inference mode if model.training is
            False and to a training friendly mode if model.training is True.
            TrainingMode.TRAINING: export the model in a training friendly mode.
        input_names(list of strings, default empty list): names to assign to the
            input nodes of the graph, in order
        output_names(list of strings, default empty list): names to assign to the
            output nodes of the graph, in order
        aten (bool, default False): [DEPRECATED. use operator_export_type] export the
            model in aten mode. If using aten mode, all the ops original exported
            by the functions in symbolic_opset<version>.py are exported as ATen ops.
        export_raw_ir (bool, default False): [DEPRECATED. use operator_export_type]
            export the internal IR directly instead of converting it to ONNX ops.
        operator_export_type (enum, default OperatorExportTypes.ONNX):
            OperatorExportTypes.ONNX: all ops are exported as regular ONNX ops.
            OperatorExportTypes.ONNX_ATEN: all ops are exported as ATen ops.
            OperatorExportTypes.ONNX_ATEN_FALLBACK: if symbolic is missing, fall back on ATen op.
            OperatorExportTypes.RAW: export raw ir.
        opset_version (int, default is 9): by default we export the model to the
            opset version of the onnx submodule. Since ONNX's latest opset may
            evolve before next stable release, by default we export to one stable
            opset version. Right now, supported stable opset version is 9.
            The opset_version must be _onnx_master_opset or in _onnx_stable_opsets
            which are defined in torch/onnx/symbolic_helper.py
        do_constant_folding (bool, default False): If True, the constant-folding
            optimization is applied to the model during export. Constant-folding
            optimization will replace some of the ops that have all constant
            inputs, with pre-computed constant nodes.
        example_outputs (tuple of Tensors, default None): Model's example outputs being exported.
            example_outputs must be provided when exporting a ScriptModule or TorchScript Function.
        strip_doc_string (bool, default True): if True, strips the field
            "doc_string" from the exported model, which information about the stack
            trace.
        dynamic_axes (dict<string, dict<int, string>> or dict<string, list(int)>, default empty dict):
            a dictionary to specify dynamic axes of input/output, such that:
            - KEY:  input and/or output names
            - VALUE: index of dynamic axes for given key and potentially the name to be used for
            exported dynamic axes. In general the value is defined according to one of the following
            ways or a combination of both:
            (1). A list of integers specifying the dynamic axes of provided input. In this scenario
            automated names will be generated and applied to dynamic axes of provided input/output
            during export.
            OR (2). An inner dictionary that specifies a mapping FROM the index of dynamic axis in
            corresponding input/output TO the name that is desired to be applied on such axis of
            such input/output during export.

            Example. if we have the following shape for inputs and outputs:

            .. code-block:: none

                shape(input_1) = ('b', 3, 'w', 'h')
                and shape(input_2) = ('b', 4)
                and shape(output)  = ('b', 'd', 5)

            Then dynamic axes can be defined either as:
                (a). ONLY INDICES:
                    dynamic_axes = {'input_1':[0, 2, 3], 'input_2':[0], 'output':[0, 1]}

                    where automatic names will be generated for exported dynamic axes

                (b). INDICES WITH CORRESPONDING NAMES:
                    dynamic_axes = {'input_1':{0:'batch', 1:'width', 2:'height'},
                    'input_2':{0:'batch'},
                    'output':{0:'batch', 1:'detections'}

                    where provided names will be applied to exported dynamic axes

                (c). MIXED MODE OF (a) and (b)
                    dynamic_axes = {'input_1':[0, 2, 3], 'input_2':{0:'batch'}, 'output':[0,1]}
        keep_initializers_as_inputs (bool, default None): If True, all the initializers
            (typically corresponding to parameters) in the exported graph will also be
            added as inputs to the graph. If False, then initializers are not added as
            inputs to the graph, and only the non-parameter inputs are added as inputs.
            This may allow for better optimizations (such as constant folding etc.) by
            backends/runtimes that execute these graphs. If unspecified (default None),
            then the behavior is chosen automatically as follows. If operator_export_type
            is OperatorExportTypes.ONNX, the behavior is equivalent to setting this
            argument to False. For other values of operator_export_type, the behavior is
            equivalent to setting this argument to True. Note that for ONNX opset version < 9,
            initializers MUST be part of graph inputs. Therefore, if opset_version argument is
            set to a 8 or lower, this argument will be ignored.
        custom_opsets (dict<string, int>, default empty dict): A dictionary to indicate
            custom opset domain and version at export. If model contains a custom opset,
            it is optional to specify the domain and opset version in the dictionary:
            - KEY: opset domain name
            - VALUE: opset version
            If the custom opset is not provided in this dictionary, opset version is set
            to 1 by default.
        enable_onnx_checker (bool, default True): If True the onnx model checker will be run
            as part of the export, to ensure the exported model is a valid ONNX model.
        external_data_format (bool, default False): If True, then the model is exported
            in ONNX external data format, in which case some of the model parameters are stored
            in external binary files and not in the ONNX model file itself. See link for format
            details: 
            https://github.com/onnx/onnx/blob/8b3f7e2e7a0f2aba0e629e23d89f07c7fc0e6a5e/onnx/onnx.proto#L423
            Also, in this case,  argument 'f' must be a string specifying the location of the model.
            The external binary files will be stored in the same location specified by the model 
            location 'f'. If False, then the model is stored in regular format, i.e. model and
            parameters are all in one file. This argument is ignored for all export types other
            than ONNX. 
    """

    from torch.onnx import utils
    return utils.export(model, args, f, export_params, verbose, training,
                        input_names, output_names, aten, export_raw_ir,
                        operator_export_type, opset_version,
                        _retain_param_name, do_constant_folding,
                        example_outputs, strip_doc_string, dynamic_axes,
                        keep_initializers_as_inputs, custom_opsets,
                        enable_onnx_checker, use_external_data_format)
示例#5
0
def export(model, args, f, export_params=True, verbose=False, training=TrainingMode.EVAL,
           input_names=None, output_names=None, aten=False, export_raw_ir=False,
           operator_export_type=None, opset_version=None, _retain_param_name=True,
           do_constant_folding=True, example_outputs=None, strip_doc_string=True,
           dynamic_axes=None, keep_initializers_as_inputs=None, custom_opsets=None,
           enable_onnx_checker=True, use_external_data_format=False):
    r"""
    Export a model into ONNX format.  This exporter runs your model
    once in order to get a trace of its execution to be exported;
    at the moment, it supports a limited set of dynamic models (e.g., RNNs.)

    Args:
        model (torch.nn.Module): the model to be exported.
        args (tuple of arguments or torch.Tensor, a dictionary consisting of named arguments (optional)):
            a dictionary to specify the input to the corresponding named parameter:
            - KEY: str, named parameter
            - VALUE: corresponding input
            args can be structured either as:

            1. ONLY A TUPLE OF ARGUMENTS or torch.Tensor::

                "args = (x, y, z)"

            The inputs to the model, e.g., such that ``model(*args)`` is a valid invocation
            of the model. Any non-Tensor arguments will be hard-coded into the exported model;
            any Tensor arguments will become inputs of the exported model, in the order they
            occur in args. If args is a Tensor, this is equivalent to having
            called it with a 1-ary tuple of that Tensor.

            2. A TUPLE OF ARGUEMENTS WITH A DICTIONARY OF NAMED PARAMETERS::

                "args = (x,
                        {
                        'y': input_y,
                        'z': input_z
                        })"

            The inputs to the model are structured as a tuple consisting of
            non-keyword arguments and the last value of this tuple being a dictionary
            consisting of named parameters and the corresponding inputs as key-value pairs.
            If certain named argument is not present in the dictionary, it is assigned
            the default value, or None if default value is not provided.

            Cases in which an dictionary input is the last input of the args tuple
            would cause a conflict when a dictionary of named parameters is used.
            The model below provides such an example.

                class Model(torch.nn.Module):
                    def forward(self, k, x):
                        ...
                        return x

                m = Model()
                k = torch.randn(2, 3)
                x = {torch.tensor(1.): torch.randn(2, 3)}

                In the previous iteration, the call to export API would look like

                    torch.onnx.export(model, (k, x), 'test.onnx')

                This would work as intended. However, the export function
                would now assume that the `x` input is intended to represent the optional
                dictionary consisting of named arguments. In order to prevent this from being
                an issue a constraint is placed to provide an empty dictionary as the last
                input in the tuple args in such cases. The new call would look like this.

                    torch.onnx.export(model, (k, x, {}), 'test.onnx')

        f: a file-like object (has to implement fileno that returns a file descriptor)
            or a string containing a file name.  A binary Protobuf will be written
            to this file.
        export_params (bool, default True): if specified, all parameters will
            be exported.  Set this to False if you want to export an untrained model.
            In this case, the exported model will first take all of its parameters
            as arguments, the ordering as specified by ``model.state_dict().values()``
        verbose (bool, default False): if specified, we will print out a debug
            description of the trace being exported.
        training (enum, default TrainingMode.EVAL):
            TrainingMode.EVAL: export the model in inference mode.
            TrainingMode.PRESERVE: export the model in inference mode if model.training is
            False and to a training friendly mode if model.training is True.
            TrainingMode.TRAINING: export the model in a training friendly mode.
        input_names(list of strings, default empty list): names to assign to the
            input nodes of the graph, in order
        output_names(list of strings, default empty list): names to assign to the
            output nodes of the graph, in order
        aten (bool, default False): [DEPRECATED. use operator_export_type] export the
            model in aten mode. If using aten mode, all the ops original exported
            by the functions in symbolic_opset<version>.py are exported as ATen ops.
        export_raw_ir (bool, default False): [DEPRECATED. use operator_export_type]
            export the internal IR directly instead of converting it to ONNX ops.
        operator_export_type (enum, default OperatorExportTypes.ONNX):
            OperatorExportTypes.ONNX: All ops are exported as regular ONNX ops
            (with ONNX namespace).
            OperatorExportTypes.ONNX_ATEN: All ops are exported as ATen ops
            (with aten namespace).
            OperatorExportTypes.ONNX_ATEN_FALLBACK: If an ATen op is not supported
            in ONNX or its symbolic is missing, fall back on ATen op. Registered ops
            are exported to ONNX regularly.
            Example graph::

                graph(%0 : Float)::
                  %3 : int = prim::Constant[value=0]()
                  %4 : Float = aten::triu(%0, %3) # missing op
                  %5 : Float = aten::mul(%4, %0) # registered op
                  return (%5)

            is exported as::

                graph(%0 : Float)::
                  %1 : Long() = onnx::Constant[value={0}]()
                  %2 : Float = aten::ATen[operator="triu"](%0, %1)  # missing op
                  %3 : Float = onnx::Mul(%2, %0) # registered op
                  return (%3)

            In the above example, aten::triu is not supported in ONNX, hence
            exporter falls back on this op.
            OperatorExportTypes.RAW: Export raw ir.
            OperatorExportTypes.ONNX_FALLTHROUGH: If an op is not supported
            in ONNX, fall through and export the operator as is, as a custom
            ONNX op. Using this mode, the op can be exported and implemented by
            the user for their runtime backend.
            Example graph::

                graph(%x.1 : Long(1, strides=[1]))::
                  %1 : None = prim::Constant()
                  %2 : Tensor = aten::sum(%x.1, %1)
                  %y.1 : Tensor[] = prim::ListConstruct(%2)
                  return (%y.1)

            is exported as::

                graph(%x.1 : Long(1, strides=[1]))::
                  %1 : Tensor = onnx::ReduceSum[keepdims=0](%x.1)
                  %y.1 : Long() = prim::ListConstruct(%1)
                  return (%y.1)

            In the above example, prim::ListConstruct is not supported, hence
            exporter falls through.

        opset_version (int, default is 9): by default we export the model to the
            opset version of the onnx submodule. Since ONNX's latest opset may
            evolve before next stable release, by default we export to one stable
            opset version. Right now, supported stable opset version is 9.
            The opset_version must be _onnx_main_opset or in _onnx_stable_opsets
            which are defined in torch/onnx/symbolic_helper.py
        do_constant_folding (bool, default False): If True, the constant-folding
            optimization is applied to the model during export. Constant-folding
            optimization will replace some of the ops that have all constant
            inputs, with pre-computed constant nodes.
        example_outputs (tuple of Tensors, default None): Model's example outputs being exported.
            example_outputs must be provided when exporting a ScriptModule or TorchScript Function.
        strip_doc_string (bool, default True): if True, strips the field
            "doc_string" from the exported model, which information about the stack
            trace.
        dynamic_axes (dict<string, dict<int, string>> or dict<string, list(int)>, default empty dict):
            a dictionary to specify dynamic axes of input/output, such that:
            - KEY:  input and/or output names
            - VALUE: index of dynamic axes for given key and potentially the name to be used for
            exported dynamic axes. In general the value is defined according to one of the following
            ways or a combination of both:
            (1). A list of integers specifying the dynamic axes of provided input. In this scenario
            automated names will be generated and applied to dynamic axes of provided input/output
            during export.
            OR (2). An inner dictionary that specifies a mapping FROM the index of dynamic axis in
            corresponding input/output TO the name that is desired to be applied on such axis of
            such input/output during export.

            Example. if we have the following shape for inputs and outputs:

            .. code-block:: none

                shape(input_1) = ('b', 3, 'w', 'h')
                and shape(input_2) = ('b', 4)
                and shape(output)  = ('b', 'd', 5)

            Then `dynamic axes` can be defined either as:

            1. ONLY INDICES::

                ``dynamic_axes = {'input_1':[0, 2, 3],
                                  'input_2':[0],
                                  'output':[0, 1]}``
                where automatic names will be generated for exported dynamic axes

            2. INDICES WITH CORRESPONDING NAMES::

                ``dynamic_axes = {'input_1':{0:'batch',
                                             1:'width',
                                             2:'height'},
                                  'input_2':{0:'batch'},
                                  'output':{0:'batch',
                                            1:'detections'}}``
                where provided names will be applied to exported dynamic axes

            3. MIXED MODE OF (1) and (2)::

                ``dynamic_axes = {'input_1':[0, 2, 3],
                                  'input_2':{0:'batch'},
                                  'output':[0,1]}``

        keep_initializers_as_inputs (bool, default None): If True, all the
            initializers (typically corresponding to parameters) in the
            exported graph will also be added as inputs to the graph. If False,
            then initializers are not added as inputs to the graph, and only
            the non-parameter inputs are added as inputs.

            This may allow for better optimizations (such as constant folding
            etc.) by backends/runtimes that execute these graphs. If
            unspecified (default None), then the behavior is chosen
            automatically as follows. If operator_export_type is
            OperatorExportTypes.ONNX, the behavior is equivalent to setting
            this argument to False. For other values of operator_export_type,
            the behavior is equivalent to setting this argument to True. Note
            that for ONNX opset version < 9, initializers MUST be part of graph
            inputs. Therefore, if opset_version argument is set to a 8 or
            lower, this argument will be ignored.
        custom_opsets (dict<string, int>, default empty dict): A dictionary to indicate
            custom opset domain and version at export. If model contains a custom opset,
            it is optional to specify the domain and opset version in the dictionary:
            - KEY: opset domain name
            - VALUE: opset version
            If the custom opset is not provided in this dictionary, opset version is set
            to 1 by default.
        enable_onnx_checker (bool, default True): If True the onnx model checker will be run
            as part of the export, to ensure the exported model is a valid ONNX model.
        use_external_data_format (bool, default False): If True, then the model is exported
            in ONNX external data format, in which case some of the model parameters are stored
            in external binary files and not in the ONNX model file itself. See link for format
            details:
            https://github.com/onnx/onnx/blob/8b3f7e2e7a0f2aba0e629e23d89f07c7fc0e6a5e/onnx/onnx.proto#L423
            Also, in this case,  argument 'f' must be a string specifying the location of the model.
            The external binary files will be stored in the same location specified by the model
            location 'f'. If False, then the model is stored in regular format, i.e. model and
            parameters are all in one file. This argument is ignored for all export types other
            than ONNX.
    """

    from torch.onnx import utils
    return utils.export(model, args, f, export_params, verbose, training,
                        input_names, output_names, aten, export_raw_ir,
                        operator_export_type, opset_version, _retain_param_name,
                        do_constant_folding, example_outputs,
                        strip_doc_string, dynamic_axes, keep_initializers_as_inputs,
                        custom_opsets, enable_onnx_checker, use_external_data_format)
示例#6
0
def export(*args, **kwargs):
    from torch.onnx import utils
    return utils.export(*args, **kwargs)
示例#7
0
model = net.get_pose_net(num_layers=34,
                         heads={
                             'hm': 1,
                             'wh': 2,
                             'id': 512,
                             'reg': 2
                         })
model = load_model(model, "../weights/all_dla34.pth")
model.eval()
model.cuda()
# # https://github.com/xingyizhou/CenterNet/blob/master/readme/MODEL_ZOO.md 这里下载的
# # 如果下载不了,可以尝试我提供的连接:http://zifuture.com:1000/fs/public_models/ctdet_coco_dla_2x.pth
# checkpoint = torch.load(r"ctdet_coco_dla_2x.pth", map_location="cpu")
# checkpoint = checkpoint["state_dict"]
# change = OrderedDict()
# for key, op in checkpoint.items():
#     change[key.replace("module.", "", 1)] = op
#
# model.load_state_dict(change)
# model.eval()
# model.cuda()

input = torch.zeros((1, 3, 608, 1088)).cuda()
#
# # 有个已经导出好的模型:http://zifuture.com:1000/fs/public_models/dladcnv2.onnx
onnx.export(model, (input),
            "../weights/all_dla34.onnx",
            output_names=["hm", "wh", "reg", "id", "hm_pool"],
            verbose=True)
#onnx.export(model, (input), "../models/all_dla34.onnx", output_names=["hm", "wh", "reg", "id"], verbose=True)
示例#8
0
# 请下载官方的代码,然后执行这个就可以生成了
import numpy as np
import torch
import torch.onnx.utils as onnx
import models.networks.pose_dla_dcn as net
from collections import OrderedDict
import cv2

model = net.get_pose_net(num_layers=34, heads={'hm': 80, 'wh': 2, 'reg': 2})

# https://github.com/xingyizhou/CenterNet/blob/master/readme/MODEL_ZOO.md 这里下载的
# 如果下载不了,可以尝试我提供的连接:http://zifuture.com:1000/fs/public_models/ctdet_coco_dla_2x.pth
checkpoint = torch.load(r"ctdet_coco_dla_2x.pth", map_location="cpu")
checkpoint = checkpoint["state_dict"]
change = OrderedDict()
for key, op in checkpoint.items():
    change[key.replace("module.", "", 1)] = op

model.load_state_dict(change)
model.eval()
model.cuda()

input = torch.zeros((1, 3, 32, 32)).cuda()

# 有个已经导出好的模型:http://zifuture.com:1000/fs/public_models/dladcnv2.onnx
onnx.export(model, (input),
            "dladcnv2.onnx",
            output_names=["hm", "wh", "reg", "hm_pool"],
            verbose=True)
import numpy as np
import torch
import torch.onnx.utils as onnx
import models.networks.pose_dla_conv as net
from collections import OrderedDict

model = net.get_pose_net(num_layers=34,
                         heads={
                             'hm': 1,
                             'wh': 4,
                             'reg': 2,
                             'id': 128
                         })

checkpoint = torch.load(r"models/model_54_crowdhuman.pth", map_location="cpu")
checkpoint = checkpoint["state_dict"]
change = OrderedDict()
for key, op in checkpoint.items():
    change[key.replace("module.", "", 1)] = op

model.load_state_dict(change)
model.eval()
model.cuda()

input = torch.zeros((1, 3, 608, 1088)).cuda()
[hm, wh, reg, hm_pool, id_feature] = model(input)
onnx.export(model, (input),
            "model_54_crowdhuman_1088x608.onnx",
            output_names=["hm", "wh", "reg", "hm_pool", "id"],
            verbose=True)