def _new_nmt_criterion(vocab_size): weight = torch.ones(vocab_size) weight[Constants.PAD] = 0 criterion = nn.NLLLoss(weight, size_average=False) if torch_is_using_cuda(): criterion.cuda() return criterion
def _new_nmt_criterion(self, vocab_size): weight = torch.ones(vocab_size) weight[Constants.PAD] = 0 criterion = nn.NLLLoss(weight, size_average=False) if self._gpu_ids is not None: criterion.cuda() return criterion
def _inversion_coef(self, constants): X, y, permuted_y, XTX, XTy, XTmy = constants.values() feature_sparsity = self.feature_sparsity if self.GPU: identity = torch.diag(torch.ones(XTX.shape[0])).float().cuda() else: identity = torch.diag(torch.ones(XTX.shape[0])).float() penality = torch.exp(self._params["lambda"]) * identity if self.elastic_feature_sparsity: mu = torch.sigmoid(self._params["feature_elastic_coef"]) coef = self._inversion_coef_without_sparsity(penality, XTX, XTy) * mu coef += self._inversion_coef_with_sparsity(penality, XTX, XTy) * (1 - mu) elif feature_sparsity: coef = self._inversion_coef_with_sparsity(penality, XTX, XTy) else: coef = self._inversion_coef_without_sparsity(penality, XTX, XTy) self.coef_ = self._tensor_to_array(coef)
def _inversion_forward(self, constants, feature_sparsity): X, y, XTX, XTy = constants.values() if feature_sparsity: sparse_vector = torch.diag(self._sparsify("feature")) sparse_X = X @ sparse_vector sparse_XTX = sparse_vector @ XTX @ sparse_vector sparse_XTy = sparse_vector @ XTy penality = torch.exp(self._params["lambda"]) * torch.diag( torch.ones(XTX.shape[0])).float().cuda() inv = torch.inverse(sparse_XTX + penality) projection_matrix = sparse_X @ inv y_hat = projection_matrix @ sparse_XTy return y_hat, permuted_y_hat else: penality = torch.exp(self._params["lambda"]) * torch.diag( torch.ones(XTX.shape[0])).float().cuda() inv = torch.inverse(XTX + penality) projection_matrix = X @ inv y_hat = projection_matrix @ XTy return y_hat
def get_mask(attentions, lengths): """ Construct mask for padded itemsteps, based on lengths """ max_len = max(lengths.data) mask = Variable(torch.ones(attentions.size())).detach() mask = mask.to(DEVICE) for i, l in enumerate(lengths.data): # skip the first sentence if l < max_len: mask[i, l:] = 0 return mask
def get_mask(attentions, lengths): """ Construct mask for padded itemsteps, based on lengths """ max_len = max(lengths.data) # Detaches the Tensor from the graph that created it, making it a leaf. # Views cannot be detached in-place. mask = Variable(torch.ones( attentions.size())).detach() # Variable/Tensor mask = mask.to(DEVICE) for i, l in enumerate(lengths.data): # skip the first sentence if l < max_len: mask[i, l:] = 0 # [1 1 1 0 0 0 0 ...] return mask