示例#1
0
    def __iter__(self):
        samplers_list = []
        sampler_iterators = []
        datasets_length = []
        for dataset_idx in range(self.number_of_datasets):
            cur_dataset = self.dataset.datasets[dataset_idx]
            print("The length for dataset + " + str(cur_dataset.batch_layers) +
                  " is " + str(len(cur_dataset.data)))
            sampler = RandomSampler(cur_dataset)
            samplers_list.append(sampler)
            cur_sampler_iterator = sampler.__iter__()
            sampler_iterators.append(cur_sampler_iterator)
            datasets_length.append(len(cur_dataset))

        push_index_val = [0] + self.dataset.cumulative_sizes[:-1]
        step = self.batch_size  # * self.number_of_datasets
        samples_to_grab = self.batch_size
        largest_dataset_index = torch.argmax(
            torch.as_tensor(datasets_length)).item()
        # for this case we want to get all samples in dataset, this force us to resample from the smaller datasets
        # epoch_samples = datasets_length[largest_dataset_index] * self.number_of_datasets
        # iterate over the total length of the combined datasets (slightly oversampling some datasets, and undersampling others)
        epoch_samples = self.total_length

        final_samples_list = [
        ]  # this is a list of indexes from the combined dataset
        for _ in range(0, epoch_samples, step):
            #TODO instead of alternating between datasets, flip a (weighted) coin every time
            coin_toss = torch.rand(1).item()
            for threshold in self.partitions:
                if threshold > coin_toss:
                    i = self.partitions.index(threshold)
                    break
            # for i in range(self.number_of_datasets):
            cur_batch_sampler = sampler_iterators[i]
            cur_samples = []
            for _ in range(samples_to_grab):
                try:
                    cur_sample_org = cur_batch_sampler.__next__()
                    cur_sample = cur_sample_org + push_index_val[i]
                    cur_samples.append(cur_sample)
                except StopIteration:
                    if i == largest_dataset_index:
                        # largest dataset iterator is done we can break
                        samples_to_grab = len(
                            cur_samples)  # adjusting the samples_to_grab
                        # got to the end of iterator - extend final list and continue to next task if possible
                        break
                    else:
                        # restart the iterator - we want more samples until finishing with the largest dataset
                        sampler_iterators[i] = samplers_list[i].__iter__()
                        cur_batch_sampler = sampler_iterators[i]
                        cur_sample_org = cur_batch_sampler.__next__()
                        cur_sample = cur_sample_org + push_index_val[i]
                        cur_samples.append(cur_sample)
            final_samples_list.extend(cur_samples)

        return iter(final_samples_list)
示例#2
0
    def __iter__(self):
        samplers_list = []
        sampler_iterators = []
        datasets_length = []
        for dataset_idx in range(self.number_of_datasets):
            cur_dataset = self.dataset.datasets[dataset_idx]
            sampler = RandomSampler(cur_dataset)
            samplers_list.append(sampler)
            cur_sampler_iterator = sampler.__iter__()
            sampler_iterators.append(cur_sampler_iterator)
            datasets_length.append(len(cur_dataset))

        push_index_val = [0] + self.dataset.cumulative_sizes[:-1]
        step = self.batch_size * self.number_of_datasets
        samples_to_grab = self.batch_size
        largest_dataset_index = torch.argmax(
            torch.as_tensor(datasets_length)).item()
        # for this case we want to get all samples in dataset, this force us to resample from the smaller datasets
        epoch_samples = datasets_length[
            largest_dataset_index] * self.number_of_datasets

        final_samples_list = [
        ]  # this is a list of indexes from the combined dataset
        for _ in range(0, epoch_samples, step):
            for i in range(self.number_of_datasets):
                cur_batch_sampler = sampler_iterators[i]
                cur_samples = []
                if i == 0:
                    samples_to_grab *= 2
                else:
                    samples_to_grab = self.batch_size
                for _ in range(samples_to_grab):
                    try:
                        cur_sample_org = cur_batch_sampler.__next__()
                        cur_sample = cur_sample_org + push_index_val[i]
                        cur_samples.append(cur_sample)
                    except StopIteration:
                        if i == largest_dataset_index:
                            # largest dataset iterator is done we can break
                            samples_to_grab = len(
                                cur_samples)  # adjusting the samples_to_grab
                            # got to the end of iterator - extend final list and continue to next task if possible
                            break
                        else:
                            # restart the iterator - we want more samples until finishing with the largest dataset
                            sampler_iterators[i] = samplers_list[i].__iter__()
                            cur_batch_sampler = sampler_iterators[i]
                            cur_sample_org = cur_batch_sampler.__next__()
                            cur_sample = cur_sample_org + push_index_val[i]
                            cur_samples.append(cur_sample)

                final_samples_list.extend(cur_samples)

        return iter(final_samples_list)
示例#3
0
    def __iter__(self):
        samplers_list = []
        sampler_iterators = []
        for dataset_idx in range(self.number_of_datasets):
            cur_dataset = self.dataset.datasets[dataset_idx]
            sampler = RandomSampler(cur_dataset)
            samplers_list.append(sampler)
            cur_sampler_iterator = sampler.__iter__()
            sampler_iterators.append(cur_sampler_iterator)

        push_index_val = [0] + self.dataset.cumulative_sizes[:-1]
        step = self.batch_size * self.number_of_datasets
        samples_to_grab = self.batch_size
        # for this case we want to get all samples in dataset, this force us to resample from the smaller datasets
        epoch_samples = self.largest_dataset_size * self.number_of_datasets

        final_samples_list = [
        ]  # this is a list of indexes from the combined dataset
        for _ in range(0, epoch_samples, step):
            for i in range(self.number_of_datasets):
                cur_batch_sampler = sampler_iterators[i]
                cur_samples = []
                for _ in range(samples_to_grab):
                    try:
                        cur_sample_org = cur_batch_sampler.__next__()
                        cur_sample = cur_sample_org + push_index_val[i]
                        cur_samples.append(cur_sample)
                    except StopIteration:
                        # got to the end of iterator - restart the iterator and continue to get samples
                        # until reaching "epoch_samples"
                        sampler_iterators[i] = samplers_list[i].__iter__()
                        cur_batch_sampler = sampler_iterators[i]
                        cur_sample_org = cur_batch_sampler.__next__()
                        cur_sample = cur_sample_org + push_index_val[i]
                        cur_samples.append(cur_sample)
                final_samples_list.extend(cur_samples)

        return iter(final_samples_list)