示例#1
0
def Euroc(root, train_sequence, test_sequence, split, stride, transform):
    train_seq = [
        'V2_01_easy', 'MH_02_easy', 'V1_03_difficult', 'V1_01_easy',
        'V1_02_medium', 'V2_02_medium', 'MH_04_difficult', 'MH_03_medium'
    ]
    test_seq = ['MH_05_difficult', 'V2_03_difficult']
    # vector_w = T * vector_b
    #read csv
    train_image_list = []
    train_pose_list = []
    for seq in train_seq:
        path_csv = os.path.join(root, seq, 'data.csv')
        df = pd.DataFrame(pd.read_csv(path_csv))
        image_list = df['filename'].values.tolist()
        image_list = [
            os.path.join(root, seq, 'image', name) for name in image_list
        ]
        pose_list = []
        for row in df.iterrows():
            index, data = row
            pose_list.append(data.tolist()[1:-1])
        pose_list = [util.vector_to_transform(item) for item in pose_list]
        train_image_list.append(image_list)
        train_pose_list.append(pose_list)
    # train_dataset = base_dataset(image_list[0:int(len(image_list)*split)], pose_list[0:int(len(image_list)*split)], stride, transform)
    train_dataset = base_dataset(train_image_list, train_pose_list, stride,
                                 transform)

    test_image_list = []
    test_pose_list = []
    for seq in test_seq:
        path_csv = os.path.join(root, seq, 'data.csv')
        df = pd.DataFrame(pd.read_csv(path_csv))
        image_list = df['filename'].values.tolist()
        image_list = [
            os.path.join(root, seq, 'image', name) for name in image_list
        ]
        pose_list = []
        for row in df.iterrows():
            index, data = row
            pose_list.append(data.tolist()[1:-1])
        pose_list = [util.vector_to_transform(item) for item in pose_list]
        test_image_list.append(image_list)
        test_pose_list.append(pose_list)
    # test_dataset = base_dataset(image_list[int(len(image_list)*split):], pose_list[int(len(image_list)*split):], stride, transform)
    test_dataset = base_dataset(test_image_list, test_pose_list, stride,
                                transform)
    return train_dataset, test_dataset
示例#2
0
 def load_csv(self, name="labels.csv"):
     self.data = []
     for d in self.dir:
         data = pd.read_csv(os.path.join(d, name), skiprows=None)
         data = data.values
         data = data.tolist()
         data = [[d + "/ori/" + _[0].replace("jpg", "png"), _[1]] for _ in data]
         self.data += data
示例#3
0
def crop_center(pil_img, crop_width, crop_height):
    img_width, img_height = pil_img.size
    pil_img.crop(
        ((img_width - crop_width) // 2, (img_height - crop_height) // 2,
         (img_width + crop_width) // 2, (img_height + crop_height) // 2))
    pil_img = pil_img.resize((224, 224))
    data = np.asarray(pil_img)
    data = data.tolist()
    return data
示例#4
0

def split_train_test(datasets, targets, test_ratio):
    np.random.seed(random.randrange(50))
    shuffled_indices = np.random.permutation(len(datasets))
    test_set_size = int(len(datasets) * test_ratio)
    test_indices = shuffled_indices[:test_set_size]
    train_indices = shuffled_indices[test_set_size:]
    return datasets.iloc[train_indices].values.tolist(), \
           datasets.iloc[test_indices].values.tolist(), \
           targets.iloc[train_indices].values.tolist(), \
           targets.iloc[test_indices].values.tolist()


train_data, test_data, train_target, test_target = split_train_test(
    pd.DataFrame(data.tolist()), pd.DataFrame(target.tolist()), 0.3)
train_data, test_data, train_target, test_target = torch.Tensor(
    train_data), torch.Tensor(test_data), torch.Tensor(
        train_target), torch.Tensor(test_target)


def train_model(epoch, net, train_data, train_target):
    # for i in range(0, train_data.shape[0], batch_size):
    # if i + batch_size > train_data.shape[0]:
    #     end = train_data.shape[0]
    # else:
    #     end = i + batch_size
    # batch_data = train_data[i:end]
    # batch_data = batch_data.view(-1, 300)
    # batch_data = batch_data.to(device)
    #
示例#5
0
def plot_dist(data,
              logger,
              name="undefined",
              ran=[],
              save_path="./",
              bins=100,
              kde=False,
              hist=True,
              notes="",
              redo=False,
              rug_max=False,
              stat=True,
              cumulative=False):
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    if not isinstance(data, np.ndarray):
        data = np.array(data)
    data = data.flatten()
    data = np.sort(data)
    stat_data = "mean=%.4f var=%.4f, min=%.4f, max=%.4f mid=%.4f" % (np.mean(
        data), np.var(data), np.min(data), np.max(data), np.median(data))

    num_max = 100000
    if data.shape[0] > num_max:
        print("data is too large. sample %d elements.")
        data = np.array(random.sample(data.tolist(), num_max))
    logger.write(stat_data)
    img_dir = {}

    y_interv = 0.05
    y_line = 0.95
    #hist_plot

    if hist:
        sig = True
        sig_check = False
        while sig:
            try:
                title = name + " distribution"
                if (cumulative == True):
                    title += "(cumu)"
                hist_dir = save_dir + title + ".jpg"
                img_dir["hist"] = hist_dir
                if (redo == False and os.path.exists(hist_dir)):
                    print("image already exists.")
                else:
                    plt.figure()
                    if (ran != []):
                        plt.xlim(ran[0], ran[1])
                    else:
                        set_lim(data, None, plt)
                    #sns.distplot(data, bins=bins, color='b',kde=False)
                    #method="sns"
                    plt.hist(data,
                             bins=bins,
                             color="b",
                             density=True,
                             cumulative=cumulative)
                    method = "hist"

                    plt.title(title, fontsize=large_fontsize)
                    if (stat == True):
                        plt.annotate(stat_data,
                                     xy=(0.02, y_line),
                                     xycoords='axes fraction')
                        y_line -= y_interv
                    print_notes(notes, y_line, y_interv)
                    plt.savefig(hist_dir)
                    plt.close()
                sig = False
            except Exception:
                if (sig_check == True):
                    raise Exception("exception in plot dist.")
                data, note = check_array_1d(data, logger)
                if (isinstance(notes, str)):
                    notes = [notes, note]
                elif (isinstance(notes, list)):
                    notes = notes + [note]
                sig_check = True
    try:  #kde_plot
        y_line = 0.95
        if kde:
            title = name + " dist(kde)"
            if (cumulative == True):
                title += "(cumu)"
            kde_dir = save_dir + title + ".jpg"
            img_dir["kde"] = kde_dir
            if (redo == False and os.path.exists(kde_dir)):
                print("image already exists.")
            else:
                plt.figure()
                if (ran != []):
                    plt.xlim(ran[0], ran[1])
                else:
                    set_lim(data, None, plt)
                sns.kdeplot(data, shade=True, color='b', cumulative=cumulative)
                if rug_max:
                    sns.rugplot(data[(data.shape[0] -
                                      data.shape[0] // 500):-1],
                                height=0.2,
                                color='r')
                plt.title(title, fontsize=large_fontsize)
                if stat:
                    plt.annotate(stat_data,
                                 xy=(0.02, y_line),
                                 xycoords='axes fraction')
                    y_line -= 0.05
                print_notes(notes, y_line, y_interv)
                plt.savefig(kde_dir)
                plt.close()
    except Exception:
        print("exception in kde plot %s" % (kde_dir))
    return img_dir
示例#6
0
文件: utils.py 项目: microsoft/unilm
 def _deserialize_array(self, x):
     data = array.array(self.dtype)
     data.frombytes(x)
     return data.tolist()
    teacher = torch.load(f)

optimizer = optim.Adam(student.parameters(), lr=lr)

train_set = datasets.MNIST('../data',
                           train=True,
                           download=True,
                           transform=transforms.Compose([
                               transforms.ToTensor(),
                               transforms.Normalize((0.1307, ), (0.3081, ))
                           ]))

transfer_data, transfer_labels = [], []
for data, label in train_set:
    if label != 3:
        transfer_data.append(data.tolist())
        transfer_labels.append(label)

transfer_data, transfer_labels = torch.Tensor(transfer_data), torch.Tensor(
    transfer_labels)

kwargs = {'num_workers': 1, 'pin_memory': True}
transfer_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(
    transfer_data, transfer_labels),
                                              batch_size=batch_size,
                                              shuffle=True,
                                              **kwargs)

test_loader = torch.utils.data.DataLoader(datasets.MNIST(
    '../data',
    train=False,
示例#8
0
#%%
counter = 0
for key_ in info2index:
    print(key_)
    print(info2index[key_])
    counter += 1
    if counter == 5:
        break

#%%
event_embeddings = pd.read_csv(repo_dir + "/word_embeddings/u_epoch_500.csv",
                               header=None)
embedding_lst = []
for row in event_embeddings.iterrows():
    index, data = row
    temp = data.tolist()
    actual_data = [float(x) for x in temp[0].split()]
    embedding_lst.append(actual_data)

#%%
number_to_month = {
    "01": "Jan",
    "02": "Feb",
    "03": "Mar",
    "04": "Apr",
    "05": "May",
    "06": "Jun",
    "07": "Jul",
    "08": "Aug",
    "09": "Sep",
    "10": "Oct",