if args.sample_strategy == 'sequential': sample_strategy = sampler.SequentialSampler(dataset) elif args.sample_strategy == 'random': sample_strategy = sampler.RandomSampler(dataset) dataloader = DataLoader(dataset, batch_size=params['batch_size'], num_workers=params['num_workers'], sampler=sample_strategy) dummy_input, _, _, _, _, dummy_one_hot = dataset[0] params['num_attractors'] = dummy_one_hot.shape[-1] params['num_sources'] = params['num_attractors'] params['sample_rate'] = dataset.sr dataset.reorder_sources = args.reorder_sources val_dataset.reorder_sources = args.reorder_sources pp.pprint(params) class_func = MaskEstimation if args.baseline else DeepAttractor model = utils.load_class_from_params(params, class_func).to(device) if not params['compute_training_stats']: mean, std = utils.compute_statistics_on_dataset(dataloader, device) params['training_stats'] = {'mean': mean, 'std': std + 1e-7} dataset.stats = params['training_stats'] val_dataset.stats = params['training_stats'] dataset.whiten_data = True val_dataset.whiten_data = True