def __init__( self, urls, *, length=None, open_fn=gopen.reader, handler=reraise_exception, tarhandler=None, prepare_for_worker=True, initial_pipeline=None, shard_selection=worker_urls, ): tarhandler = handler if tarhandler is None else tarhandler IterableDataset.__init__(self) SampleIterator.__init__( self, initial_pipeline=initial_pipeline, tarhandler=tarhandler, open_fn=open_fn, ) if isinstance(urls, str): urls = list(braceexpand.braceexpand(urls)) self.urls = urls self.length = length self.handler = handler self.total = 0 self.reseed_hook = do_nothing self.node_selection = identity self.shard_selection = shard_selection self.shard_shuffle = identity
def __init__( self, dataset=None, workers=4, output_size=100, pin_memory=True, prefetch=-1 ): IterableDataset.__init__(self) omp_warning() self.output_queue = mp.Queue(output_size) self.pin_memory = pin_memory self.jobs = [] for i in range(workers): job = mp.Process( target=_parallel_job, args=(dataset, i, workers, prefetch, self.output_queue), daemon=True, ) self.jobs.append(job) job.start() D("started")
def __init__(self): IterableDataset.__init__(self) self.images_and_density_maps = pipeline_results self.image_transform = torch_transforms.Compose([ torch_transforms.ToTensor() ])