示例#1
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help=
        "Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--do_explain',
                        action='store_true',
                        help="explain outputs with decomposition")
    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    args = parser.parse_args()

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    processors = {
        "cola": ColaProcessor,
        "mnli": MnliProcessor,
        "mrpc": MrpcProcessor,
        "sst-2": Sst2Processor,
        'yelp': YelpProcesser,
        'tacred': TacredProcessor
    }

    num_labels_task = {
        "cola": 2,
        "sst-2": 2,
        "mnli": 3,
        "mrpc": 2,
        'yelp': 2,
        'tacred': 42
    }

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    task_name = args.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
    num_labels = num_labels_task[task_name]
    label_list = processor.get_labels()

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    # Prepare model
    cache_dir = args.cache_dir if args.cache_dir else os.path.join(
        str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(
            args.local_rank))
    model = BertForSequenceClassification.from_pretrained(
        args.bert_model, cache_dir=cache_dir, num_labels=num_labels)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    global_step = 0
    nb_tr_steps = 0
    tr_loss = 0
    if args.do_train:
        train_features = convert_examples_to_features(train_examples,
                                                      label_list,
                                                      args.max_seq_length,
                                                      tokenizer)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features],
                                     dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                loss = model(input_ids, segment_ids, input_mask, label_ids)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear(
                            global_step / num_train_optimization_steps,
                            args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

    if args.do_train:
        # Save a trained model and the associated configuration
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        torch.save(model_to_save.state_dict(), output_model_file)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
        with open(output_config_file, 'w') as f:
            f.write(model_to_save.config.to_json_string())

        # Load a trained model and config that you have fine-tuned
        config = BertConfig(output_config_file)
        model = BertForSequenceClassification(config, num_labels=num_labels)
        model.load_state_dict(torch.load(output_model_file))
    else:
        #model = BertForSequenceClassification.from_pretrained(args.bert_model, num_labels=num_labels)
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
        # Load a trained model and config that you have fine-tuned
        config = BertConfig(output_config_file)
        model = BertForSequenceClassification(config, num_labels=num_labels)
        model.load_state_dict(torch.load(output_model_file))
    model.to(device)

    if args.do_eval and (args.local_rank == -1
                         or torch.distributed.get_rank() == 0):
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(eval_examples, label_list,
                                                     args.max_seq_length,
                                                     tokenizer)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                     dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0

        output_eval_file = os.path.join(args.output_dir,
                                        "eval_results_details.txt")
        f = open(output_eval_file, 'w')

        all_pred, all_truth = [], []

        for input_ids, input_mask, segment_ids, label_ids in tqdm(
                eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                tmp_eval_loss = model(input_ids, segment_ids, input_mask,
                                      label_ids)
                logits = model(input_ids, segment_ids, input_mask)
                #print(logits.cpu().numpy().tolist())
                if args.do_explain:
                    predict_and_explain_wrapper_unbatched(
                        model, input_ids, segment_ids, input_mask, label_ids,
                        tokenizer)

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            tmp_eval_accuracy = accuracy(logits, label_ids)

            pred = np.argmax(logits, -1)
            all_pred.extend(pred.reshape(-1).tolist())
            all_truth.extend(label_ids.reshape(-1).tolist())

            eval_loss += tmp_eval_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

            for i in range(input_ids.size(0)):
                logit = logits[i, 1] - logits[i, 0]
                logit = logit.item()
                text = ' '.join(
                    tokenizer.convert_ids_to_tokens(
                        input_ids[i].cpu().numpy()))
                f.write('%f\t%s\n' % (logit, text))

        eval_loss = eval_loss / nb_eval_steps
        if task_name != 'tacred':
            eval_accuracy = eval_accuracy / nb_eval_examples
            metric = 'accuracy'
        else:
            _, _, eval_accuracy = tacred_f1_score(all_truth, all_pred)
            metric = 'f1'
        loss = tr_loss / nb_tr_steps if args.do_train else None
        result = {
            'eval_loss': eval_loss,
            'eval_%s' % metric: eval_accuracy,
            'global_step': global_step,
            'loss': loss
        }

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))
示例#2
0
def distil_embeddings(config_file: str, train_file: str, val_file: str,
                      train_sample_rate: float, val_sample_rate: float,
                      input_model_path: str, output_model_path: str,
                      random_seed: int, neptune_project: str,
                      saved_embeddings: str):
    seed_everything(random_seed)

    train_file = get_true_file(train_file)
    val_file = get_true_file(val_file)
    assert train_file.endswith(".jsonl")
    assert val_file.endswith(".jsonl")

    config = json.loads(jsonnet_evaluate_file(config_file))

    print("Fetching data...")
    train_records = [
        r for r in parse_tg_jsonl(train_file)
        if random.random() <= train_sample_rate
    ]
    val_records = [
        r for r in parse_tg_jsonl(val_file)
        if random.random() <= val_sample_rate
    ]

    tokenizer = AutoTokenizer.from_pretrained(input_model_path)
    max_tokens_count = config.get("max_tokens_count", 196)
    if not saved_embeddings or not os.path.isfile(saved_embeddings):
        print("Loading teacher model...")
        input_model = AutoModel.from_pretrained(input_model_path)

        print("Saving embeddings...")
        url2text = {
            r["url"]: r["text"]
            for r in itertools.chain(train_records, val_records)
        }
        urls = []
        embeddings = []
        batch_urls = []
        batch_texts = []
        batch_size = 8
        for url, text in tqdm(url2text.items()):
            batch_urls.append(url)
            batch_texts.append(text)
            if len(batch_urls) == batch_size:
                urls.extend(batch_urls)
                batch_embeddings = calc_batch_embeddings(
                    batch_texts, tokenizer, input_model, max_tokens_count)
                for embedding in batch_embeddings:
                    embeddings.append(embedding)
                batch_urls = []
                batch_texts = []
        if batch_urls:
            urls.extend(batch_urls)
            batch_embeddings = calc_batch_embeddings(batch_texts, tokenizer,
                                                     input_model,
                                                     max_tokens_count)
            for embedding in batch_embeddings:
                embeddings.append(embedding)
        embeddings = torch.tensor(embeddings)
        data = {"urls": urls, "embeddings": embeddings}
        torch.save(data, saved_embeddings)
    else:
        print("Loading embeddings...")
        data = torch.load(saved_embeddings)

    url2num = {url: num for num, url in enumerate(data["urls"])}
    num2embedding = data["embeddings"]

    batch_size = config.get("batch_size", 32)
    num_workers = config.get("num_workers", 5)
    train_dataset = EmbeddingsAsTargetDataset(train_records, url2num,
                                              num2embedding, tokenizer,
                                              max_tokens_count)
    train_sampler = RandomSampler(train_dataset)
    train_loader = DataLoader(train_dataset,
                              sampler=train_sampler,
                              batch_size=batch_size,
                              num_workers=num_workers)

    val_dataset = EmbeddingsAsTargetDataset(val_records, url2num,
                                            num2embedding, tokenizer,
                                            max_tokens_count)
    val_loader = DataLoader(val_dataset,
                            batch_size=batch_size,
                            num_workers=num_workers)

    patience = config.get("patience", 4)
    epochs = config.get("epochs", 5)
    gradient_clip_val = config.get("gradient_clip_val", 1.0)

    logger = False
    neptune_api_token = os.getenv("NEPTUNE_API_TOKEN")
    if neptune_project and neptune_api_token:
        params = copy.copy(config)
        params["train_sample_rate"] = train_sample_rate
        params["val_sample_rate"] = val_sample_rate
        params["train_file"] = train_file
        params["val_file"] = val_file
        logger = NeptuneLogger(
            api_key=neptune_api_token,
            project_name=neptune_project,
            experiment_name="Distil embeddings",
            tags=["training", "pytorch-lightning", "distil"],
            params=params)

    lightning_model = DistilEmbeddingBertLightning(config)
    early_stop_callback = EarlyStopping(monitor="val_loss",
                                        min_delta=0.0,
                                        patience=patience,
                                        verbose=True,
                                        mode="min")
    trainer = Trainer(gpus=0,
                      checkpoint_callback=False,
                      accumulate_grad_batches=1,
                      max_epochs=epochs,
                      callbacks=[early_stop_callback],
                      val_check_interval=1.0,
                      gradient_clip_val=gradient_clip_val,
                      deterministic=True,
                      logger=logger)
    trainer.fit(lightning_model, train_loader, val_loader)
def main():
    parser = argparse.ArgumentParser()
    ## Required parameters
    ###############
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )
    parser.add_argument("--pretrain_model",
                        default='bert-case-uncased',
                        type=str,
                        required=True,
                        help="Pre-trained model")
    parser.add_argument("--num_labels_task",
                        default=None,
                        type=int,
                        required=True,
                        help="num_labels_task")
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        default=False,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        default=False,
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_lower_case",
        default=False,
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--eval_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        default=False,
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument("--weight_decay",
                        default=0.0,
                        type=float,
                        help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon",
                        default=1e-8,
                        type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm",
                        default=1.0,
                        type=float,
                        help="Max gradient norm.")
    parser.add_argument(
        '--fp16_opt_level',
        type=str,
        default='O1',
        help=
        "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument("--task",
                        default=None,
                        type=int,
                        required=True,
                        help="Choose Task")
    ###############

    args = parser.parse_args()
    #print(args.do_train, args.do_eval)
    #exit()

    processors = Processor_1

    num_labels = args.num_labels_task

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {}, n_gpu: {}, distributed training: {}, 16-bits training: {}"
        .format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    #args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")
    '''
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
    '''
    os.makedirs(args.output_dir, exist_ok=True)

    tokenizer = RobertaTokenizer.from_pretrained(args.pretrain_model)

    train_examples = None
    num_train_steps = None
    aspect_list = None
    sentiment_list = None
    processor = processors()
    num_labels = num_labels
    #train_examples, aspect_list, sentiment_list = processor.get_train_examples(args.data_dir)

    filenames = os.listdir(args.output_dir)
    filenames = [x for x in filenames if "pytorch_model.bin_" in x]
    print(filenames)

    file_mark = []
    for x in filenames:
        file_mark.append([x, True])
        #file_mark.append([x, False])

    ####
    ####
    test_examples, aspect_list, sentiment_list = processor.get_test_examples(
        args.data_dir)
    if args.task == 1:
        num_labels = len(aspect_list)
    elif args.task == 2:
        num_labels = len(sentiment_list)
    else:
        print("What's task?")
        exit()
    dev = convert_examples_to_features(test_examples, aspect_list,
                                       sentiment_list, args.max_seq_length,
                                       tokenizer, args.task)
    eval_examples = test_examples
    ###

    for x, mark in file_mark:
        print(x, mark)
        output_model_file = os.path.join(args.output_dir, x)
        print(output_model_file)

        #model = RobertaForSequenceClassification.from_pretrained(args.pretrain_model, num_labels=num_labels, output_hidden_states=False, output_attentions=False, return_dict=True)
        model = RobertaForMaskedLMDomainTask.from_pretrained(
            args.pretrain_model,
            output_hidden_states=False,
            output_attentions=False,
            return_dict=True,
            num_labels=args.num_labels_task)
        model.load_state_dict(torch.load(output_model_file), strict=False)
        #strict False: ignore non-matching keys

        #param_optimizer = [para[0] for para in model.named_parameters()]
        #param_optimizer = [para for para in model.named_parameters()][-2]
        #print(param_optimizer)

        model.to(device)
        if mark:
            eval_features = dev
        else:
            eval_features = test

        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)

        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_attention_mask = torch.tensor(
            [f.attention_mask for f in eval_features], dtype=torch.long)
        if args.task == 1:
            print("Excuting the task 1")
        elif args.task == 2:
            all_segment_ids = torch.tensor(
                [f.segment_ids for f in eval_features], dtype=torch.long)
        else:
            print("Wrong here2")

        all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                     dtype=torch.long)

        if args.task == 1:
            eval_data = TensorDataset(all_input_ids, all_attention_mask,
                                      all_label_ids)
        elif args.task == 2:
            eval_data = TensorDataset(all_input_ids, all_attention_mask,
                                      all_segment_ids, all_label_ids)
        else:
            print("Wrong here1")

        if args.local_rank == -1:
            eval_sampler = RandomSampler(eval_data)
        else:
            eval_sampler = DistributedSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        if mark:
            output_eval_file = os.path.join(
                args.output_dir,
                "eval_results_{}.txt".format(x.split("_")[-1]))
            output_file_pred = os.path.join(
                args.output_dir, "eval_pred_{}.txt".format(x.split("_")[-1]))
            output_file_glod = os.path.join(
                args.output_dir, "eval_gold_{}.txt".format(x.split("_")[-1]))
        else:
            output_eval_file = os.path.join(
                args.output_dir,
                "test_results_{}.txt".format(x.split("_")[-1]))
            output_file_pred = os.path.join(
                args.output_dir, "test_pred_{}.txt".format(x.split("_")[-1]))
            output_file_glod = os.path.join(
                args.output_dir, "test_gold_{}.txt".format(x.split("_")[-1]))

        fpred = open(output_file_pred, "w")
        fgold = open(output_file_glod, "w")

        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0

        for step, batch in enumerate(tqdm(eval_dataloader, desc="Iteration")):
            #batch = tuple(t.to(device) if i != 3 else t for i, t in enumerate(batch))
            batch = tuple(t.to(device) for i, t in enumerate(batch))

            if args.task == 1:
                input_ids, attention_mask, label_ids = batch
            elif args.task == 2:
                input_ids, attention_mask, segment_ids, label_ids = batch
            else:
                print("Wrong here3")

            if args.task == 1:
                #loss, logits, hidden_states, attentions
                '''
                output = model(input_ids=input_ids, token_type_ids=None, attention_mask=attention_mask, labels=label_ids)
                logits = output.logits
                tmp_eval_loss = output.loss
                '''
                #
                tmp_eval_loss, logits = model(input_ids_org=input_ids,
                                              sentence_label=label_ids,
                                              attention_mask=attention_mask,
                                              func="task_class")
                #logits = output.logits
                #tmp_eval_loss = output.loss
            elif args.task == 2:
                #loss, logits, hidden_states, attentions
                '''
                output = model(input_ids=input_ids, token_type_ids=None, attention_mask=attention_mask, labels=label_ids)
                logits = output.logits
                tmp_eval_loss = output.loss
                '''
                #
                tmp_eval_loss, logits = model(input_ids_org=input_ids,
                                              sentence_label=label_ids,
                                              attention_mask=attention_mask,
                                              func="task_class")
                #exit()
                #logits = output.logits
                #tmp_eval_loss = output.loss
            else:
                print("Wrong!!")

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            tmp_eval_accuracy, pred = accuracy(logits, label_ids)
            for a, b in zip(pred, label_ids):
                fgold.write("{}\n".format(b))
                fpred.write("{}\n".format(a))

            eval_loss += tmp_eval_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples

        result = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy}

        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))
示例#4
0
 def __init__(self, indices, replacement=False, num_samples=None):
     RandomSampler.__init__(self, indices, replacement, num_samples)
def main():
    parser = argparse.ArgumentParser()
    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help=
        "Bert pre-trained model selected in the list: bert-base-uncased, bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, bert-base-multilingual-cased, bert-base-chinese."
    )
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )
    ## Other parameters
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \nSequences longer than this will be truncated, and sequences shorter \nthan this will be padded."
    )
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10%% of training."
    )
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n0 (default value): dynamic loss scaling.\nPositive power of 2: static loss scaling value.\n"
    )
    parser.add_argument("--eval_file_to_load",
                        default=None,
                        type=str,
                        help="which model file to load for eval.")
    args = parser.parse_args()
    processors = {
        "cola": ColaProcessor,
        "mnli": MnliProcessor,
        "mrpc": MrpcProcessor,
        "bioasq": BioProcessor
    }
    num_labels_task = {"cola": 2, "mnli": 3, "mrpc": 2, "bioasq": 2}
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))
    ####
    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))
    ####
    args.train_batch_size = int(args.train_batch_size /
                                args.gradient_accumulation_steps)
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)
    ####
    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")
    ####
    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    os.makedirs(args.output_dir, exist_ok=True)
    ####
    task_name = args.task_name.lower()
    ####
    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))
    ####
    processor = processors[task_name]()
    num_labels = num_labels_task[task_name]
    label_list = processor.get_labels()
    ####
    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case,
                                              cache_dir=cache_dir)
    ####
    train_examples = None
    num_train_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps * args.num_train_epochs)
        ####
    # Prepare model
    model = BertForSequenceClassification.from_pretrained(
        args.bert_model,
        cache_dir=PYTORCH_PRETRAINED_BERT_CACHE /
        'distributed_{}'.format(args.local_rank),
        num_labels=num_labels
        # , cache_dir =cache_dir
    )
    ####
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )
        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)
    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    t_total = num_train_steps
    if args.local_rank != -1:
        t_total = t_total // torch.distributed.get_world_size()
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )
        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)
    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=t_total)
    ####
    global_step = 0
    nb_tr_steps = 0
    tr_loss = 0
    if args.do_train:
        train_features = convert_examples_to_features(train_examples,
                                                      label_list,
                                                      args.max_seq_length,
                                                      tokenizer)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features],
                                     dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)
        ####
        model.train()
        for ep in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                loss = model(input_ids, segment_ids, input_mask, label_ids)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                ####
                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
                ####
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    # modify learning rate with special warm up BERT uses
                    lr_this_step = args.learning_rate * warmup_linear(
                        global_step / t_total, args.warmup_proportion)
                    for param_group in optimizer.param_groups:
                        param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1
            ####
            # Save a trained model
            model_to_save = model.module if hasattr(
                model, 'module') else model  # Only save the model it-self
            output_model_file = os.path.join(args.output_dir,
                                             "pytorch_model_{}.bin".format(ep))
            if args.do_train:
                torch.save(model_to_save.state_dict(), output_model_file)
        ####
    ####
    # Load a trained model that you have fine-tuned
    if (args.eval_file_to_load is not None):
        output_model_file = args.eval_file_to_load
    model_state_dict = torch.load(output_model_file)
    model = BertForSequenceClassification.from_pretrained(
        args.bert_model,
        state_dict=model_state_dict,
        num_labels=num_labels,
        cache_dir=cache_dir)
    model.to(device)
    ####
    if args.do_eval and (args.local_rank == -1
                         or torch.distributed.get_rank() == 0):
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(eval_examples, label_list,
                                                     args.max_seq_length,
                                                     tokenizer)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                     dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)
        ####
        model.eval()
        eval_loss, eval_accuracy = 0, 0
        eval_accuracy2 = 0
        nb_eval_steps, nb_eval_examples = 0, 0
        ####
        for input_ids, input_mask, segment_ids, label_ids in tqdm(
                eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)
            ####
            with torch.no_grad():
                tmp_eval_loss = model(input_ids, segment_ids, input_mask,
                                      label_ids)
                logits = model(input_ids, segment_ids, input_mask)
            ####
            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            tmp_eval_accuracy = accuracy(logits, label_ids)
            tmp_eval_accuracy2 = accuracy(np.zeros_like(logits), label_ids)
            ####
            eval_loss += tmp_eval_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy
            eval_accuracy2 += tmp_eval_accuracy2
            ####
            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1
        ####
        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples
        eval_accuracy2 = eval_accuracy2 / nb_eval_examples
        loss = tr_loss / nb_tr_steps if args.do_train else None
        result = {
            'eval_loss': eval_loss,
            'eval_accuracy': eval_accuracy,
            'eval_accuracy2': eval_accuracy2,
            'global_step': global_step,
            'loss': loss
        }
        ####
        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))
def run_train(args):
    # --------- data
    processor = BertProcessor(vocab_path=config['bert_vocab_path'], do_lower_case=args.do_lower_case)
    label_list = processor.get_labels()
    label2id = {label: i for i, label in enumerate(label_list)}
    id2label = {i: label for i, label in enumerate(label_list)}

    train_data = processor.get_train(config['data_dir'] / f"{args.data_name}.train.pkl")
    train_examples = processor.create_examples(lines=train_data,
                                               example_type='train',
                                               cached_examples_file=config[
                                                                        'data_dir'] / f"cached_train_examples_{args.arch}")
    train_features = processor.create_features(examples=train_examples,
                                               max_seq_len=args.train_max_seq_len,
                                               cached_features_file=config[
                                                                        'data_dir'] / "cached_train_features_{}_{}".format(
                                                   args.train_max_seq_len, args.arch
                                               ))
    train_dataset = processor.create_dataset(train_features, is_sorted=args.sorted)
    if args.sorted:
        train_sampler = SequentialSampler(train_dataset)
    else:
        train_sampler = RandomSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

    valid_data = processor.get_dev(config['data_dir'] / f"{args.data_name}.valid.pkl")
    valid_examples = processor.create_examples(lines=valid_data,
                                               example_type='valid',
                                               cached_examples_file=config[
                                                                        'data_dir'] / f"cached_valid_examples_{args.arch}")

    valid_features = processor.create_features(examples=valid_examples,
                                               max_seq_len=args.eval_max_seq_len,
                                               cached_features_file=config[
                                                                        'data_dir'] / "cached_valid_features_{}_{}".format(
                                                   args.eval_max_seq_len, args.arch
                                               ))
    valid_dataset = processor.create_dataset(valid_features)
    valid_sampler = SequentialSampler(valid_dataset)
    valid_dataloader = DataLoader(valid_dataset, sampler=valid_sampler, batch_size=args.eval_batch_size)

    # ------- model
    logger.info("initializing model")
    if args.resume_path:
        args.resume_path = Path(args.resume_path)
        model = BertForMultiClass.from_pretrained(args.resume_path, num_labels=len(label_list))
    else:
        model = BertForMultiClass.from_pretrained(config['bert_model_dir'], num_labels=len(label_list))
    t_total = int(len(train_dataloader) / args.gradient_accumulation_steps * args.epochs)

    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
         'weight_decay': args.weight_decay},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
    ]
    warmup_steps = int(t_total * args.warmup_proportion)
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    lr_scheduler = WarmupLinearSchedule(optimizer, warmup_steps=warmup_steps, t_total=t_total)

    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # ---- callbacks
    logger.info("initializing callbacks")
    train_monitor = TrainingMonitor(file_dir=config['figure_dir'], arch=args.arch)
    model_checkpoint = ModelCheckpoint(checkpoint_dir=config['checkpoint_dir'], mode=args.mode,
                                       monitor=args.monitor, arch=args.arch,
                                       save_best_only=args.save_best)

    # **************************** training model ***********************
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_examples))
    logger.info("  Num Epochs = %d", args.epochs)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                args.train_batch_size * args.gradient_accumulation_steps * (
                    torch.distributed.get_world_size() if args.local_rank != -1 else 1))
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    trainer = Trainer(n_gpu=args.n_gpu,
                      model=model,
                      epochs=args.epochs,
                      logger=logger,
                      criterion=CrossEntropy(),
                      optimizer=optimizer,
                      lr_scheduler=lr_scheduler,
                      early_stopping=None,
                      training_monitor=train_monitor,
                      fp16=args.fp16,
                      resume_path=args.resume_path,
                      grad_clip=args.grad_clip,
                      model_checkpoint=model_checkpoint,
                      gradient_accumulation_steps=args.gradient_accumulation_steps,
                      evaluate=F1Score(),
                      class_report=ClassReport(target_names=[id2label[x] for x in range(len(label2id))]))
    trainer.train(train_data=train_dataloader, valid_data=valid_dataloader, seed=args.seed)
示例#7
0
    def create_dataloader(self):
        data = DATADOUBAN(
            debug=False,
            data_dir=self.data_dir,
        )
        train_examples = data.read_examples(
            os.path.join(self.data_dir, 'train.csv'))
        train_features = data.convert_examples_to_features(
            train_examples, self.tokenizer, self.max_seq_length)
        all_input_ids_utt = torch.tensor(data.select_field(
            train_features, 'input_ids_utt'),
                                         dtype=torch.long)
        all_input_mask_utt = torch.tensor(data.select_field(
            train_features, 'input_mask_utt'),
                                          dtype=torch.long)
        all_segment_ids_utt = torch.tensor(data.select_field(
            train_features, 'segment_ids_utt'),
                                           dtype=torch.long)
        all_input_ids_resp = torch.tensor(data.select_field(
            train_features, 'input_ids_resp'),
                                          dtype=torch.long)
        all_input_mask_resp = torch.tensor(data.select_field(
            train_features, 'input_mask_resp'),
                                           dtype=torch.long)
        all_segment_ids_resp = torch.tensor(data.select_field(
            train_features, 'segment_ids_resp'),
                                            dtype=torch.long)

        all_label = torch.tensor([f.label for f in train_features],
                                 dtype=torch.long)
        train_data = TensorDataset(all_input_ids_utt, all_input_mask_utt,
                                   all_segment_ids_utt, all_input_ids_resp,
                                   all_input_mask_resp, all_segment_ids_resp,
                                   all_label)

        train_sampler = RandomSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=self.train_batch_size)

        eval_examples = data.read_examples(
            os.path.join(self.data_dir, 'dev.csv'))
        eval_features = data.convert_examples_to_features(
            eval_examples, self.tokenizer, self.max_seq_length)
        all_input_ids_utt = torch.tensor(data.select_field(
            eval_features, 'input_ids_utt'),
                                         dtype=torch.long)
        all_input_mask_utt = torch.tensor(data.select_field(
            eval_features, 'input_mask_utt'),
                                          dtype=torch.long)
        all_segment_ids_utt = torch.tensor(data.select_field(
            eval_features, 'segment_ids_utt'),
                                           dtype=torch.long)
        all_input_ids_resp = torch.tensor(data.select_field(
            eval_features, 'input_ids_resp'),
                                          dtype=torch.long)
        all_input_mask_resp = torch.tensor(data.select_field(
            eval_features, 'input_mask_resp'),
                                           dtype=torch.long)
        all_segment_ids_resp = torch.tensor(data.select_field(
            eval_features, 'segment_ids_resp'),
                                            dtype=torch.long)

        all_label = torch.tensor([f.label for f in eval_features],
                                 dtype=torch.long)
        eval_data = TensorDataset(all_input_ids_utt, all_input_mask_utt,
                                  all_segment_ids_utt, all_input_ids_resp,
                                  all_input_mask_resp, all_segment_ids_resp,
                                  all_label)
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=self.eval_batch_size)

        return train_dataloader, eval_dataloader, train_examples, eval_examples
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir",
                        default='/hdd/lujunyu/dataset/multi_turn_corpus/ubuntu/',
                        type=str,
                        required=False,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
    parser.add_argument("--task_name",
                        default='ubuntu',
                        type=str,
                        required=False,
                        help="The name of the task to train.")
    parser.add_argument("--output_dir",
                        default='/hdd/lujunyu/model/chatbert/ubuntu_without_finetune_check/',
                        type=str,
                        required=False,
                        help="The output directory where the model checkpoints will be written.")

    ## Other parameters
    parser.add_argument("--init_model_name",
                        default='bert-base-uncased',
                        type=str,
                        help="Initial checkpoint (usually from a pre-trained BERT model).")
    parser.add_argument("--do_lower_case",
                        default=True,
                        action='store_true',
                        help="Whether to lower case the input text. True for uncased models, False for cased models.")
    parser.add_argument("--data_augmentation",
                        default=False,
                        action='store_true',
                        help="Whether to use augmentation")
    parser.add_argument("--max_seq_length",
                        default=256,
                        type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument("--do_train",
                        default=True,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_test",
                        default=True,
                        action='store_true',
                        help="Whether to run eval on the test set.")
    parser.add_argument("--train_batch_size",
                        default=500,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=500,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=3e-3,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=10.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_steps",
                        default=0.0,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--weight_decay",
                        default=0,
                        type=float,
                        help="weight_decay")
    parser.add_argument("--save_checkpoints_steps",
                        default=400,
                        type=int,
                        help="How often to save the model checkpoint.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
                        help="Number of updates steps to accumualte before performing a backward/update pass.")
    args = parser.parse_args()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info("device %s n_gpu %d distributed training %r", device, n_gpu, bool(args.local_rank != -1))

    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))

    per_step_train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")

    bert_config = BertConfig.from_pretrained(args.init_model_name, num_labels=2)

    if args.max_seq_length > bert_config.max_position_embeddings:
        raise ValueError(
            "Cannot use sequence length {} because the BERT model was only trained up to sequence length {}".format(
            args.max_seq_length, bert_config.max_position_embeddings))

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
        if args.do_train:
            raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
    else:
        os.makedirs(args.output_dir, exist_ok=True)

    tokenizer = BertTokenizer.from_pretrained(args.init_model_name, do_lower_case=args.do_lower_case)
    if args.data_augmentation:
        train_dataset = UbuntuDatasetForSP(
            file_path=os.path.join(args.data_dir, "train_augment_3.txt"),
            max_seq_length=args.max_seq_length,
            tokenizer=tokenizer
        )
    else:
        train_dataset = UbuntuDatasetForSP(
            file_path=os.path.join(args.data_dir, "train.txt"),
            max_seq_length=args.max_seq_length,
            tokenizer=tokenizer
        )
    eval_dataset = UbuntuDatasetForSP(
        file_path=os.path.join(args.data_dir, "train.txt"),
        max_seq_length=args.max_seq_length,
        tokenizer=tokenizer
    )

    train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=per_step_train_batch_size,
                                                sampler=RandomSampler(train_dataset), num_workers=8)
    eval_dataloader = torch.utils.data.DataLoader(eval_dataset, batch_size=per_step_train_batch_size,
                                                sampler=SequentialSampler(eval_dataset), num_workers=8)

    model = BertForSequenceClassification.from_pretrained(args.init_model_name, config=bert_config)
    model.to(device)

    for k, v in model.named_parameters():
        if k.startswith('bert'):
            v.requires_grad = False

    num_train_steps = None
    if args.do_train:
        num_train_steps = int(
            len(train_dataset) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs)
        # Prepare optimizer
        param_optimizer = list(model.named_parameters())
        # remove pooler, which is not used thus it produce None grad that break apex
        param_optimizer = [n for n in param_optimizer if n[-1].requires_grad]
        for k, v in param_optimizer:
            if v.requires_grad:
                print(k, v.size())

        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
            'weight_decay': args.weight_decay}, {
            'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay': 0.0}]

        optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
        scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=num_train_steps)
    else:
        optimizer = None
        scheduler = None

    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    global_step = 0
    best_metric = 0.0
    if args.do_train:
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_dataset))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)

        training_loss_file = open(os.path.join(args.output_dir, 'training_loss_file.txt'), 'a')
        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                loss, _ = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=label_ids)
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                loss.backward()
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    optimizer.step()    # We have accumulated enought gradients
                    scheduler.step()
                    model.zero_grad()
                    global_step += 1

                if step % args.save_checkpoints_steps == 0:
                    model.eval()
                    f = open(os.path.join(args.output_dir, 'logits_dev.txt'), 'w')
                    eval_loss = 0
                    nb_eval_steps, nb_eval_examples = 0, 0
                    logits_all = []
                    for input_ids, input_mask, segment_ids, label_ids in eval_dataloader:
                        input_ids = input_ids.to(device)
                        input_mask = input_mask.to(device)
                        segment_ids = segment_ids.to(device)
                        label_ids = label_ids.to(device)

                        with torch.no_grad():
                            tmp_eval_loss, logits = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=label_ids)

                        logits = logits.detach().cpu().numpy()
                        logits_all.append(logits)
                        label_ids = label_ids.cpu().numpy()

                        for logit, label in zip(logits, label_ids):
                            logit = '{},{}'.format(logit[0], logit[1])
                            f.write('_\t{}\t{}\n'.format(logit, label))

                        eval_loss += tmp_eval_loss.mean().item()

                        nb_eval_examples += input_ids.size(0)
                        nb_eval_steps += 1

                    f.close()
                    logits_all = np.concatenate(logits_all,axis=0)
                    eval_loss = eval_loss / nb_eval_steps

                    result = evaluate(os.path.join(args.output_dir, 'logits_dev.txt'))
                    result.update({'eval_loss': eval_loss})

                    output_eval_file = os.path.join(args.output_dir, "eval_results_dev.txt")
                    with open(output_eval_file, "a") as writer:
                        logger.info("***** Eval results *****")
                        for key in sorted(result.keys()):
                            logger.info("  %s = %s", key, str(result[key]))
                            writer.write("%s = %s\n" % (key, str(result[key])))

                    ### Save the best checkpoint
                    if best_metric < result['R10@1'] + result['R10@2']:
                        try:  ### Remove 'module' prefix when using DataParallel
                            state_dict = model.module.state_dict()
                        except AttributeError:
                            state_dict = model.state_dict()
                        torch.save(state_dict, os.path.join(args.output_dir, "model.pt"))
                        best_metric = result['R10@1'] + result['R10@2']
                        logger.info('Saving the best model in {}'.format(os.path.join(args.output_dir, "model.pt")))

                        ### visualize bad cases of the best model
                        logger.info('Saving Bad cases...')
                        visualize_bad_cases(
                            logits=logits_all,
                            input_file_path=os.path.join(args.data_dir, 'valid.txt'),
                            output_file_path=os.path.join(args.output_dir, 'valid_bad_cases.txt')
                        )

                    model.train()
示例#9
0
def train(args, train_dataset, model, tokenizer):
    """ Train the model """
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(
        train_dataset) if args.local_rank == -1 else DistributedSampler(
            train_dataset)
    train_dataloader = DataLoader(train_dataset,
                                  sampler=train_sampler,
                                  batch_size=args.train_batch_size,
                                  collate_fn=collate_fn)
    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (
            len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(
            train_dataloader
        ) // args.gradient_accumulation_steps * args.num_train_epochs
    # Prepare optimizer and schedule (linear warmup and decay)
    no_decay = ["bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
        {
            "params": [
                p for n, p in model.named_parameters()
                if not any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            args.weight_decay,
        },
        {
            "params": [
                p for n, p in model.named_parameters()
                if any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            0.0
        },
    ]
    optimizer = AdamW(optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(
        optimizer,
        num_warmup_steps=args.warmup_steps,
        num_training_steps=t_total)
    # Check if saved optimizer or scheduler states exist
    if os.path.isfile(os.path.join(
            args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
                os.path.join(args.model_name_or_path, "scheduler.pt")):
        # Load in optimizer and scheduler states
        optimizer.load_state_dict(
            torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(
            torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model,
            device_ids=[args.local_rank],
            output_device=args.local_rank,
            find_unused_parameters=True)
    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d",
                args.per_gpu_train_batch_size)
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size * args.gradient_accumulation_steps *
        (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
    logger.info("  Gradient Accumulation steps = %d",
                args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if os.path.exists(args.model_name_or_path
                      ) and "checkpoint" in args.model_name_or_path:
        # set global_step to gobal_step of last saved checkpoint from model path
        global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0])
        epochs_trained = global_step // (len(train_dataloader) //
                                         args.gradient_accumulation_steps)
        steps_trained_in_current_epoch = global_step % (
            len(train_dataloader) // args.gradient_accumulation_steps)
        logger.info(
            "  Continuing training from checkpoint, will skip to saved global_step"
        )
        logger.info("  Continuing training from epoch %d", epochs_trained)
        logger.info("  Continuing training from global step %d", global_step)
        logger.info("  Will skip the first %d steps in the first epoch",
                    steps_trained_in_current_epoch)
    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
    seed_everything(
        args.seed
    )  # Added here for reproductibility (even between python 2 and 3)
    for epoch in range(int(args.num_train_epochs)):
        logger.info('epoch {}/{}'.format(epoch + 1, args.num_train_epochs))
        pbar = ProgressBar(n_total=len(train_dataloader), desc='Training')
        for step, batch in enumerate(train_dataloader):
            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue
            model.train()
            batch = tuple(t.to(args.device) for t in batch)
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "start_positions": batch[3],
                "end_positions": batch[4]
            }
            if args.model_type != "distilbert":
                # XLM and RoBERTa don"t use segment_ids
                inputs["token_type_ids"] = (batch[2] if args.model_type
                                            in ["bert", "xlnet"] else None)
            outputs = model(**inputs)
            loss = outputs[
                0]  # model outputs are always tuple in pytorch-transformers (see doc)
            if args.n_gpu > 1:
                loss = loss.mean(
                )  # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()
            pbar(step, {'loss': loss.item()})
            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(
                        amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(),
                                                   args.max_grad_norm)
                scheduler.step()  # Update learning rate schedule
                optimizer.step()
                model.zero_grad()
                global_step += 1
                if args.local_rank in [
                        -1, 0
                ] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
                    print()
                    if args.local_rank == -1 and args.do_eval:
                        # Only evaluate when single GPU otherwise metrics may not average well
                        evaluate(args, model, tokenizer)
                if args.local_rank in [
                        -1, 0
                ] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
                    output_dir = os.path.join(
                        args.output_dir, "checkpoint-{}".format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    torch.save(args,
                               os.path.join(output_dir, "training_args.bin"))
                    tokenizer.save_vocabulary(output_dir)
                    logger.info("Saving model checkpoint to %s", output_dir)
                    torch.save(optimizer.state_dict(),
                               os.path.join(output_dir, "optimizer.pt"))
                    torch.save(scheduler.state_dict(),
                               os.path.join(output_dir, "scheduler.pt"))
                    logger.info("Saving optimizer and scheduler states to %s",
                                output_dir)
        print()
        if 'cuda' in str(args.device):
            torch.cuda.empty_cache()
    return global_step, tr_loss / global_step
示例#10
0
def train(args, train_dataset, model, tokenizer):
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter(args.log_dir)

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(
        train_dataset) if args.local_rank == -1 else DistributedSampler(
            train_dataset)
    train_dataloader = DataLoader(train_dataset,
                                  sampler=train_sampler,
                                  batch_size=args.train_batch_size)

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (
            len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(
            train_dataloader
        ) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
    no_decay = ["bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
        {
            "params": [
                p for n, p in model.named_parameters()
                if not any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            args.weight_decay,
        },
        {
            "params": [
                p for n, p in model.named_parameters()
                if any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            0.0
        },
    ]

    optimizer = AdamW(optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(
        optimizer,
        num_warmup_steps=args.warmup_steps,
        num_training_steps=t_total)

    # Check if saved optimizer or scheduler states exist
    if os.path.isfile(os.path.join(
            args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
                os.path.join(args.model_name_or_path, "scheduler.pt")):
        # Load in optimizer and scheduler states
        optimizer.load_state_dict(
            torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(
            torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))

    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model,
            device_ids=[args.local_rank],
            output_device=args.local_rank,
            find_unused_parameters=True,
        )

    # EARLY STOPPING: split training data into training and validation
    # obtain training indices that will be used for validation
    if args.es:
        num_train = len(train_dataset)
        indices = list(range(num_train))
        np.random.shuffle(indices)
        split = int(np.floor(args.valid_size * num_train))
        train_idx, valid_idx = indices[split:], indices[:split]

        # define samplers for obtaining training and validation batches
        es_train_sampler = SubsetRandomSampler(train_idx)
        es_valid_sampler = SubsetRandomSampler(valid_idx)

        # load training data in batches
        train_dataloader = torch.utils.data.DataLoader(
            train_dataset,
            batch_size=batch_size,
            sampler=es_train_sampler,
            num_workers=0)

        # load validation data in batches
        valid_dataloader = torch.utils.data.DataLoader(
            train_dataset,
            batch_size=batch_size,
            sampler=es_valid_sampler,
            num_workers=0)
    # END EARLY STOPPING data loading -------------------------------

    # Train!
    logger.info("***** Running training *****")
    logger.info(
        "  Num examples = %d",
        len(train_dataset) if args.es else int(
            np.ceil((1 - args.valid_size) * len(train_dataset))))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d",
                args.per_gpu_train_batch_size)
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size * args.gradient_accumulation_steps *
        (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
    logger.info("  Gradient Accumulation steps = %d",
                args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    epochs_trained = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if os.path.exists(args.model_name_or_path):
        # set global_step to gobal_step of last saved checkpoint from model path
        global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0])
        epochs_trained = global_step // (len(train_dataloader) //
                                         args.gradient_accumulation_steps)
        steps_trained_in_current_epoch = global_step % (
            len(train_dataloader) // args.gradient_accumulation_steps)

        logger.info(
            "  Continuing training from checkpoint, will skip to saved global_step"
        )
        logger.info("  Continuing training from epoch %d", epochs_trained)
        logger.info("  Continuing training from global step %d", global_step)
        logger.info("  Will skip the first %d steps in the first epoch",
                    steps_trained_in_current_epoch)

    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
    train_iterator = trange(
        epochs_trained,
        int(args.num_train_epochs),
        desc="Epoch",
        disable=args.local_rank not in [-1, 0],
    )
    set_seed(args)  # Added here for reproductibility

    # EARLY STOPPING setup----------------------------------------------
    if args.es:
        # to track the training loss as the model trains
        train_losses = []
        # to track the validation loss as the model trains
        valid_losses = []
        # to track the average training loss per epoch as the model trains
        avg_train_losses = []
        # to track the average validation loss per epoch as the model trains
        avg_valid_losses = []
        # initialize the early_stopping object
        early_stopping = EarlyStopping(patience=patience, verbose=True)
    # END EARLY STOPPING setup------------------------------------------

    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader,
                              desc="Iteration",
                              disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):

            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

            model.train()
            batch = tuple(t.to(args.device) for t in batch)
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "labels": batch[3]
            }
            if args.model_type != "distilbert":
                inputs["token_type_ids"] = (
                    batch[2]
                    if args.model_type in ["bert", "xlnet", "albert"] else None
                )  # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids
            outputs = model(**inputs)
            loss = outputs[
                0]  # model outputs are always tuple in transformers (see doc)

            if args.n_gpu > 1:
                loss = loss.mean(
                )  # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if args.es:
                train_losses.append(loss.item())
            if (step + 1) % args.gradient_accumulation_steps == 0:
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(
                        amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(),
                                                   args.max_grad_norm)

                optimizer.step()
                scheduler.step()  # Update learning rate schedule
                model.zero_grad()
                global_step += 1

                if args.local_rank in [
                        -1, 0
                ] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    logs = {}
                    if (
                            args.local_rank == -1
                            and args.evaluate_during_training
                    ):  # Only evaluate when single GPU otherwise metrics may not average well
                        if args.es:
                            results = evaluate(args, model, tokenizer,
                                               valid_dataloader)
                        else:
                            results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
                            eval_key = "eval_{}".format(key)
                            logs[eval_key] = value
                        if args.es:
                            valid_losses.append(logs[eval_key])

                    loss_scalar = (tr_loss - logging_loss) / args.logging_steps
                    learning_rate_scalar = scheduler.get_lr()[0]
                    logs["learning_rate"] = learning_rate_scalar
                    logs["loss"] = loss_scalar
                    logging_loss = tr_loss

                    for key, value in logs.items():
                        tb_writer.add_scalar(key, value, global_step)
                    print(json.dumps({**logs, **{"step": global_step}}))

                # if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                # Save model checkpoint
                # output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
                # output_dir = os.path.join(args.output_dir, "checkpoint-last")
                # if not os.path.exists(output_dir):
                # os.makedirs(output_dir)
                # model_to_save = (
                # model.module if hasattr(model, "module") else model
                # )  # Take care of distributed/parallel training
                # model_to_save.save_pretrained(output_dir)
                # tokenizer.save_pretrained(output_dir)

                # torch.save(args, os.path.join(output_dir, "training_args.bin"))
                # logger.info("Saving model checkpoint to %s", output_dir)

                # torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                # torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
                # logger.info("Saving optimizer and scheduler states to %s", output_dir)
            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
            # check for early stopping at end of epoch
        if args.es:
            # print training/validation statistics
            # calculate average loss over an epoch
            train_loss = np.average(train_losses)
            valid_loss = np.average(valid_losses)
            avg_train_losses.append(train_loss)
            avg_valid_losses.append(valid_loss)

            epoch_len = args.num_train_epochs

            print_msg = (f'[{epoch:>{epoch_len}}/{n_epochs:>{epoch_len}}] ' +
                         f'train_loss: {train_loss:.5f} ' +
                         f'valid_loss: {valid_loss:.5f}')

            print(print_msg)

            # clear lists to track next epoch
            train_losses = []
            valid_losses = []

            # early_stopping needs the validation loss to check if it has decresed,
            # and if it has, it will make a checkpoint of the current model
            early_stopping(valid_loss, model)

            if early_stopping.early_stop:
                print("Early stopping")
                break

        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break


#    if args.local_rank in [-1, 0]:
#        tb_writer.close()

    return global_step, tr_loss / global_step
示例#11
0
def train(args,
          train_dataset,
          model,
          tokenizer,
          lang2id=None,
          pretrained_model=None):
    """Train the model."""
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(
        train_dataset) if args.local_rank == -1 else DistributedSampler(
            train_dataset)
    train_dataloader = DataLoader(train_dataset,
                                  sampler=train_sampler,
                                  batch_size=args.train_batch_size)

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (
            len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(
            train_dataloader
        ) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
    no_decay = ["bias", "LayerNorm.weight"]
    if args.optimizer == 'Adam':
        optimizer_grouped_parameters = [{
            "params": [
                p for n, p in model.named_parameters()
                if not any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            args.weight_decay
        }, {
            "params": [
                p for n, p in model.named_parameters()
                if any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            0.0
        }]
        optimizer = AdamW(optimizer_grouped_parameters,
                          lr=args.learning_rate,
                          eps=args.adam_epsilon)
    elif args.optimizer == 'RecAdam':
        # Prepare for the grouped parameters for RecAdam optimizer.
        # Since the classifier layer is not pretrained, it is not penalized during optimization.
        optimizer_grouped_parameters = [{
            "params": [
                p for n, p in model.named_parameters()
                if not any(nd in n for nd in no_decay) and args.model_type in n
            ],
            "weight_decay":
            args.weight_decay,
            "anneal_w":
            args.recadam_anneal_w,
            "pretrain_params": [
                p_p for p_n, p_p in pretrained_model.named_parameters()
                if not any(nd in p_n
                           for nd in no_decay) and args.model_type in p_n
            ]
        }, {
            "params": [
                p for n, p in model.named_parameters()
                if not any(nd in n
                           for nd in no_decay) and args.model_type not in n
            ],
            "weight_decay":
            args.weight_decay,
            "anneal_w":
            0.0,
            "pretrain_params": [
                p_p for p_n, p_p in pretrained_model.named_parameters()
                if not any(nd in p_n
                           for nd in no_decay) and args.model_type not in p_n
            ]
        }, {
            "params": [
                p for n, p in model.named_parameters()
                if any(nd in n for nd in no_decay) and args.model_type in n
            ],
            "weight_decay":
            0.0,
            "anneal_w":
            args.recadam_anneal_w,
            "pretrain_params": [
                p_p for p_n, p_p in pretrained_model.named_parameters()
                if any(nd in p_n for nd in no_decay) and args.model_type in p_n
            ]
        }, {
            "params": [
                p for n, p in model.named_parameters()
                if any(nd in n for nd in no_decay) and args.model_type not in n
            ],
            "weight_decay":
            0.0,
            "anneal_w":
            0.0,
            "pretrain_params": [
                p_p for p_n, p_p in pretrained_model.named_parameters()
                if any(nd in p_n
                       for nd in no_decay) and args.model_type not in p_n
            ]
        }]
        optimizer = RecAdam(optimizer_grouped_parameters,
                            lr=args.learning_rate,
                            eps=args.adam_epsilon,
                            anneal_fun=args.recadam_anneal_fun,
                            anneal_k=args.recadam_anneal_k,
                            anneal_t0=args.recadam_anneal_t0,
                            pretrain_cof=args.recadam_pretrain_cof)

    scheduler = get_linear_schedule_with_warmup(
        optimizer,
        num_warmup_steps=args.warmup_steps,
        num_training_steps=t_total)
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model,
            device_ids=[args.local_rank],
            output_device=args.local_rank,
            find_unused_parameters=True)

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d",
                args.per_gpu_train_batch_size)
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size * args.gradient_accumulation_steps *
        (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
    logger.info("  Gradient Accumulation steps = %d",
                args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    best_score = 10000
    best_checkpoint = None
    patience = 0
    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
    train_iterator = trange(int(args.num_train_epochs),
                            desc="Epoch",
                            disable=args.local_rank not in [-1, 0])
    set_seed(
        args)  # Add here for reproductibility (even between python 2 and 3)

    cur_epoch = 0
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader,
                              desc="Iteration",
                              disable=args.local_rank not in [-1, 0])
        cur_epoch += 1
        for step, batch in enumerate(epoch_iterator):
            model.train()
            masked_inputs, masked_targets = utils.mask_tokens_sde(
                batch[0], tokenizer)
            batch = tuple(t.to(args.device) for t in batch if t is not None)
            masked_inputs = masked_inputs.to(args.device)
            masked_targets = masked_targets.to(args.device)
            inputs = {
                "input_ids": masked_inputs,
                "attention_mask": batch[1],
                "masked_lm_labels": masked_targets
            }

            if args.model_type != "distilbert":
                # XLM and RoBERTa don"t use segment_ids
                inputs["token_type_ids"] = batch[2] if args.model_type in [
                    "bert", "xlnet"
                ] else None

            if args.model_type == "xlm":
                inputs["langs"] = batch[4]

            outputs = model(**inputs)
            loss = outputs[0]

            if args.n_gpu > 1:
                # mean() to average on multi-gpu parallel training
                loss = loss.mean()
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(
                        amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(),
                                                   args.max_grad_norm)

                scheduler.step()  # Update learning rate schedule
                optimizer.step()
                model.zero_grad()
                global_step += 1

                if args.local_rank in [
                        -1, 0
                ] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
                    if args.local_rank == -1 and args.evaluate_during_training:
                        # Only evaluate on single GPU otherwise metrics may not average well
                        results = evaluate(args,
                                           model,
                                           tokenizer,
                                           mode="dev",
                                           lang=args.train_langs,
                                           lang2id=lang2id)
                        for key, value in results.items():
                            tb_writer.add_scalar("eval_{}".format(key), value,
                                                 global_step)
                    tb_writer.add_scalar("lr",
                                         scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar("loss", (tr_loss - logging_loss) /
                                         args.logging_steps, global_step)
                    logging_loss = tr_loss

                if args.local_rank in [
                        -1, 0
                ] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    if args.save_only_best_checkpoint:
                        result = evaluate(args,
                                          model,
                                          tokenizer,
                                          mode="dev",
                                          prefix=global_step,
                                          lang=args.train_langs,
                                          lang2id=lang2id)
                        if result["f1"] < best_score:
                            logger.info(
                                "result['loss']={} < best_score={}".format(
                                    result["loss"], best_score))
                            best_score = result["loss"]
                            # Save the best model checkpoint
                            output_dir = os.path.join(args.output_dir,
                                                      "checkpoint-best")
                            best_checkpoint = output_dir
                            if not os.path.exists(output_dir):
                                os.makedirs(output_dir)
                            # Take care of distributed/parallel training
                            model_to_save = model.module if hasattr(
                                model, "module") else model
                            model_to_save.save_pretrained(output_dir)
                            torch.save(
                                args,
                                os.path.join(output_dir, "training_args.bin"))
                            logger.info(
                                "Saving the best model checkpoint to %s",
                                output_dir)
                            logger.info("Reset patience to 0")
                            patience = 0
                        else:
                            patience += 1
                            logger.info("Hit patience={}".format(patience))
                            if args.eval_patience > 0 and patience > args.eval_patience:
                                logger.info(
                                    "early stop! patience={}".format(patience))
                                epoch_iterator.close()
                                train_iterator.close()
                                if args.local_rank in [-1, 0]:
                                    tb_writer.close()
                                return global_step, tr_loss / global_step
                    else:
                        # Save model checkpoint
                        output_dir = os.path.join(
                            args.output_dir,
                            "checkpoint-{}".format(global_step))
                        if not os.path.exists(output_dir):
                            os.makedirs(output_dir)
                        # Take care of distributed/parallel training
                        model_to_save = model.module if hasattr(
                            model, "module") else model
                        model_to_save.save_pretrained(output_dir)
                        torch.save(
                            args, os.path.join(output_dir,
                                               "training_args.bin"))
                        logger.info("Saving model checkpoint to %s",
                                    output_dir)

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

    return global_step, tr_loss / global_step
# Get dataset

batch_size = 32
N = len(texts)

dataset = TensorDataset(input_ids, attention_masks, labels)

logging.info('Dataset created')
logging.info('Dataset length: {}'.format(len(dataset)))

# Get Dataloader

val_data = dataset

val_dataloader = DataLoader(val_data,
                            sampler=RandomSampler(val_data),
                            batch_size=batch_size)

logging.info('\nDataloader created.\n')

# Init model

logging.info('{} Initializing model {}'.format(5 * '=', 5 * '='))

model = LET()

logging.info('Model for extraction initialized\n')

# Select device

logging.info('{} Validation {}'.format(5 * '=', 5 * '='))
示例#13
0
def train(args, train_dataset, model, tokenizer):
    """ Train the model """
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset,
                                  sampler=train_sampler,
                                  batch_size=args.train_batch_size)

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (
            len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(
            train_dataloader
        ) // args.gradient_accumulation_steps * args.num_train_epochs

    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params': [
            p for n, p in model.named_parameters()
            if not any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        args.weight_decay
    }, {
        'params': [
            p for n, p in model.named_parameters()
            if any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        0.0
    }]

    optimizer = AdamW(optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(
        optimizer,
        num_warmup_steps=args.warmup_steps,
        num_training_steps=t_total)

    # Check if saved optimizer or scheduler states exist
    if os.path.isfile(os.path.join(
            args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
                os.path.join(args.model_name_or_path, "scheduler.pt")):
        # Load in optimizer and scheduler states
        optimizer.load_state_dict(
            torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(
            torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d",
                args.per_gpu_train_batch_size)
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size * args.gradient_accumulation_steps *
        (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
    logger.info("  Gradient Accumulation steps = %d",
                args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    tr_loss = 0.0
    model.zero_grad()
    train_iterator = trange(int(args.num_train_epochs),
                            desc="Epoch",
                            disable=args.local_rank not in [-1, 0])
    set_seed(
        args)  # Added here for reproductibility (even between python 2 and 3)
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader,
                              desc="Iteration",
                              disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
            model.train()
            batch = tuple(t.to(args.device) for t in batch)
            inputs = {
                'input_ids': batch[0],
                'attention_mask': batch[1],
                'labels': batch[3]
            }

            outputs = model(**inputs)
            loss = outputs[
                0]  # model outputs are always tuple in transformers (see doc)

            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            loss.backward()
            torch.nn.utils.clip_grad_norm_(model.parameters(),
                                           args.max_grad_norm)

            tr_loss += loss.item()

            if (step + 1) % args.gradient_accumulation_steps == 0:
                optimizer.step()
                scheduler.step()  # Update learning rate schedule
                model.zero_grad()
                global_step += 1

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break

        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    return global_step, tr_loss / global_step
示例#14
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese."
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument("--train_file",
                        default=None,
                        type=str,
                        help="SQuAD json for training. E.g., train-v1.1.json")
    parser.add_argument(
        "--predict_file",
        default=None,
        type=str,
        help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json"
    )
    parser.add_argument(
        "--max_seq_length",
        default=384,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. Sequences "
        "longer than this will be truncated, and sequences shorter than this will be padded."
    )
    parser.add_argument(
        "--doc_stride",
        default=128,
        type=int,
        help=
        "When splitting up a long document into chunks, how much stride to take between chunks."
    )
    parser.add_argument(
        "--max_query_length",
        default=64,
        type=int,
        help=
        "The maximum number of tokens for the question. Questions longer than this will "
        "be truncated to this length.")
    parser.add_argument("--do_train",
                        default=False,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_predict",
                        default=False,
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--predict_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for predictions.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10% "
        "of training.")
    parser.add_argument(
        "--n_best_size",
        default=20,
        type=int,
        help=
        "The total number of n-best predictions to generate in the nbest_predictions.json "
        "output file.")
    parser.add_argument(
        "--max_answer_length",
        default=30,
        type=int,
        help=
        "The maximum length of an answer that can be generated. This is needed because the start "
        "and end predictions are not conditioned on one another.")
    parser.add_argument(
        "--verbose_logging",
        default=False,
        action='store_true',
        help=
        "If true, all of the warnings related to data processing will be printed. "
        "A number of warnings are expected for a normal SQuAD evaluation.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        "--do_lower_case",
        default=True,
        action='store_true',
        help=
        "Whether to lower case the input text. True for uncased models, False for cased models."
    )
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument(
        '--optimize_on_cpu',
        default=False,
        action='store_true',
        help=
        "Whether to perform optimization and keep the optimizer averages on CPU"
    )
    parser.add_argument(
        '--fp16',
        default=False,
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=128,
        help=
        'Loss scaling, positive power of 2 values can improve fp16 convergence.'
    )
    parser.add_argument('--gpuid',
                        type=int,
                        default=-1,
                        help='The gpu id to use')
    args = parser.parse_args()

    if args.local_rank == -1 or args.no_cuda:
        if args.gpuid >= 0 and not args.no_cuda:
            device = torch.device("cuda", args.gpuid)
            torch.cuda.set_device(args.gpuid)
            dummy = torch.cuda.FloatTensor(1)
        else:
            device = torch.device("cpu")
        n_gpu = 1
        # n_gpu = torch.cuda.device_count()
    else:
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
        if args.fp16:
            logger.info(
                "16-bits training currently not supported in distributed training"
            )
            args.fp16 = False  # (see https://github.com/pytorch/pytorch/pull/13496)
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits trainiing: {}"
        .format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = int(args.train_batch_size /
                                args.gradient_accumulation_steps)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_predict:
        raise ValueError(
            "At least one of `do_train` or `do_predict` must be True.")

    if args.do_train:
        if not args.train_file:
            raise ValueError(
                "If `do_train` is True, then `train_file` must be specified.")
    if args.do_predict:
        if not args.predict_file:
            raise ValueError(
                "If `do_predict` is True, then `predict_file` must be specified."
            )

    # if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
    #     raise ValueError("Output directory () already exists and is not empty.")
    os.makedirs(args.output_dir, exist_ok=True)

    tokenizer = BertTokenizer.from_pretrained(args.bert_model)

    train_examples = None
    num_train_steps = None
    if args.do_train:
        train_examples = read_squad_examples(input_file=args.train_file,
                                             is_training=True)
        num_train_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps * args.num_train_epochs)

    # Prepare model
    model = BertForQuestionAnswering.from_pretrained(
        args.bert_model,
        cache_dir=PYTORCH_PRETRAINED_BERT_CACHE /
        'distributed_{}'.format(args.local_rank))
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    if args.fp16:
        param_optimizer = [(n, param.clone().detach().to('cpu').float().requires_grad_()) \
                            for n, param in model.named_parameters()]
    elif args.optimize_on_cpu:
        param_optimizer = [(n, param.clone().detach().to('cpu').requires_grad_()) \
                            for n, param in model.named_parameters()]
    else:
        param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'gamma', 'beta']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay_rate':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay_rate':
        0.0
    }]
    t_total = num_train_steps
    if args.local_rank != -1:
        t_total = t_total // torch.distributed.get_world_size()
    optimizer = BertAdam(optimizer_grouped_parameters,
                         lr=args.learning_rate,
                         warmup=args.warmup_proportion,
                         t_total=t_total)

    global_step = 0
    if args.do_train:
        cached_train_features_file = args.train_file + '_{0}_{1}_{2}_{3}'.format(
            args.bert_model, str(args.max_seq_length), str(args.doc_stride),
            str(args.max_query_length))
        train_features = None
        try:
            with open(cached_train_features_file, "rb") as reader:
                train_features = pickle.load(reader)
        except:
            train_features = convert_examples_to_features(
                examples=train_examples,
                tokenizer=tokenizer,
                max_seq_length=args.max_seq_length,
                doc_stride=args.doc_stride,
                max_query_length=args.max_query_length,
                is_training=True)
            if args.local_rank == -1 or torch.distributed.get_rank() == 0:
                logger.info("  Saving train features into cached file %s",
                            cached_train_features_file)
                with open(cached_train_features_file, "wb") as writer:
                    pickle.dump(train_features, writer)
        logger.info("***** Running training *****")
        logger.info("  Num orig examples = %d", len(train_examples))
        logger.info("  Num split examples = %d", len(train_features))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_start_positions = torch.tensor(
            [f.start_position for f in train_features], dtype=torch.long)
        all_end_positions = torch.tensor(
            [f.end_position for f in train_features], dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_start_positions,
                                   all_end_positions)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                if n_gpu == 1:
                    batch = tuple(
                        t.to(device)
                        for t in batch)  # multi-gpu does scattering it-self
                input_ids, input_mask, segment_ids, start_positions, end_positions = batch
                loss = model(input_ids, segment_ids, input_mask,
                             start_positions, end_positions)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.fp16 and args.loss_scale != 1.0:
                    # rescale loss for fp16 training
                    # see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
                    loss = loss * args.loss_scale
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                loss.backward()
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16 or args.optimize_on_cpu:
                        if args.fp16 and args.loss_scale != 1.0:
                            # scale down gradients for fp16 training
                            for param in model.parameters():
                                if param.grad is not None:
                                    param.grad.data = param.grad.data / args.loss_scale
                        is_nan = set_optimizer_params_grad(
                            param_optimizer,
                            model.named_parameters(),
                            test_nan=True)
                        if is_nan:
                            logger.info(
                                "FP16 TRAINING: Nan in gradients, reducing loss scaling"
                            )
                            args.loss_scale = args.loss_scale / 2
                            model.zero_grad()
                            continue
                        optimizer.step()
                        copy_optimizer_params_to_model(
                            model.named_parameters(), param_optimizer)
                    else:
                        optimizer.step()
                    model.zero_grad()
                    global_step += 1

    if args.do_predict and (args.local_rank == -1
                            or torch.distributed.get_rank() == 0):
        eval_examples = read_squad_examples(input_file=args.predict_file,
                                            is_training=False)
        eval_features = convert_examples_to_features(
            examples=eval_examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=False)

        logger.info("***** Running predictions *****")
        logger.info("  Num orig examples = %d", len(eval_examples))
        logger.info("  Num split examples = %d", len(eval_features))
        logger.info("  Batch size = %d", args.predict_batch_size)

        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_example_index = torch.arange(all_input_ids.size(0),
                                         dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_example_index)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.predict_batch_size)

        model.eval()
        all_results = []
        logger.info("Start evaluating")
        for input_ids, input_mask, segment_ids, example_indices in tqdm(
                eval_dataloader, desc="Evaluating"):
            if len(all_results) % 1000 == 0:
                logger.info("Processing example: %d" % (len(all_results)))
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            with torch.no_grad():
                batch_start_logits, batch_end_logits = model(
                    input_ids, segment_ids, input_mask)
            for i, example_index in enumerate(example_indices):
                start_logits = batch_start_logits[i].detach().cpu().tolist()
                end_logits = batch_end_logits[i].detach().cpu().tolist()
                eval_feature = eval_features[example_index.item()]
                unique_id = int(eval_feature.unique_id)
                all_results.append(
                    RawResult(unique_id=unique_id,
                              start_logits=start_logits,
                              end_logits=end_logits))
        output_prediction_file = os.path.join(args.output_dir,
                                              "predictions.json")
        output_nbest_file = os.path.join(args.output_dir,
                                         "nbest_predictions.json")
        write_predictions(eval_examples, eval_features, all_results,
                          args.n_best_size, args.max_answer_length,
                          args.do_lower_case, output_prediction_file,
                          output_nbest_file, args.verbose_logging)
示例#15
0
print(att_masks_train[0])
print(token_type_ids_train[0])

# Data Loaders
X_train = torch.tensor(X_train)
X_valid = torch.tensor(X_valid)
y_train = torch.tensor(y_train)
y_valid = torch.tensor(y_valid)
att_masks_train = torch.tensor(att_masks_train)
att_masks_valid = torch.tensor(att_masks_valid)
token_type_ids_train = torch.tensor(token_type_ids_train)
token_type_ids_valid = torch.tensor(token_type_ids_valid)

train_data = TensorDataset(X_train, att_masks_train, token_type_ids_train,
                           y_train)
train_sampler = RandomSampler(train_data)
train_dataloader = DataLoader(train_data,
                              sampler=train_sampler,
                              batch_size=BATCH_SIZE)

validation_data = TensorDataset(X_valid, att_masks_valid, token_type_ids_valid,
                                y_valid)
validation_sampler = SequentialSampler(validation_data)
validation_dataloader = DataLoader(validation_data,
                                   sampler=validation_sampler,
                                   batch_size=BATCH_SIZE)

#######################
# Model and optimizer #
#######################
示例#16
0
    def do_end_to_end(self, train_data, valid_data):
        """
        train a pretrain model using medical data (domain specific data) end to end.

        params:
            train_example: training set
            valid_example: validation set
    
        """
        # setup
        train_batch_size = 8
        train_dataset = self._create_dataset(train_data, evaluate=False)
        print("Coding: train dataset ", train_dataset)
        train_sampler = RandomSampler(train_dataset)
        train_dataloader = DataLoader(train_dataset,
                                      sampler=train_sampler,
                                      batch_size=train_batch_size)

        valid_dataset, valid_example, valid_feature = \
                self._create_dataset(valid_data, evaluate=True, output_examples=True)
        print("Coding: len ", len(train_dataset), len(train_data),
              len(valid_data), len(valid_dataset), len(valid_example),
              len(valid_feature))

        max_step = 1  # default value in run_squad.py
        self.init_params(f_lr=2e-5, f_eps=1e-8, t_total=max_step)
        gradient_accumulation_steps = 1  # default value in run_squad.py

        # check whether optimizer is saved.
        global_step = 1
        # if check point exists, get it

        tr_loss = 0.0

        # value error
        self._model.zero_grad()
        # set random seed.
        epochs = 1
        for _ in trange(epochs, desc="Iteration"):
            epoch_iterator = tqdm(train_dataloader, desc="Iteration")
            for step, batch in enumerate(epoch_iterator):
                self._model.train()
                batch = tuple(t.to(self._device) for t in batch)

                inputs = {
                    'input_ids': batch[0],
                    'attention_mask': batch[1],
                    'token_type_ids': batch[2],
                    'start_positions': batch[3],
                    'end_positions': batch[4],
                    'cls_index': batch[5],
                    'p_mask': batch[6]
                }
                outputs = self._model(**inputs)
                loss = outputs[
                    0]  # model outputs are always tuple in pytorch-transformers (see doc)
                loss.backward()
                print("Coding: parameter ", self._model.parameters())
                # torch.nn.utils.clip_grad_norm_(self._model.parameters(), 1.0) # max_grad_norm = 1.0 by default
                f_local_loss = loss.item()
                tr_loss += f_local_loss
                print("INFO: %s epoch % loss: %0.2f %f" %
                      (global_step, step, tr_loss, f_local_loss))
                # torch.nn.utils.clip_grad_norm_(self._model, 1.0) # 1.0 is default by author's

                # this function does not have effect unless gradient_accumulation_steps > 1
                # however, it was set to 1 in original code.
                # if (step + 1) % 1 == 0:

                self._optimizer.step()
                self._scheduler.step()  # Update learning rate schedule
                self._model.zero_grad()
                global_step += 1

                # validation
                result = self.evaluate(valid_dataset, valid_example,
                                       valid_feature)
                print("Coding: result ", result)
    def train_model(self, encoded_data: TensorDataset, steps_per_epoch: int):
        logging.info(f"starting to train model")

        sampler = RandomSampler(encoded_data)
        dataloader = DataLoader(encoded_data,
                                sampler=sampler,
                                batch_size=self.hyper_dict["batch_size"])

        num_total_steps = steps_per_epoch * self.hyper_dict["epochs"]

        param_optimizer = list(self.model.named_parameters())
        no_decay = ["bias", "gamma", "beta", "LayerNorm.weight"]
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay_rate':
            self.hyper_dict["decay_rate"]
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay_rate':
            0.0
        }]

        optimizer = AdamW(optimizer_grouped_parameters,
                          lr=self.hyper_dict["learning_rate"],
                          correct_bias=False)
        scheduler = get_linear_schedule_with_warmup(
            optimizer,
            num_warmup_steps=self.hyper_dict["warmup_steps"],
            num_training_steps=num_total_steps)

        self.model.train()

        for _ in range(self.hyper_dict["epochs"]):
            logging.info("starting epoch")

            training_loss = []
            for batch in dataloader:
                batch = tuple(t.to(self.device) for t in batch)
                b_input_ids, b_type_ids, b_input_mask, b_labels = batch

                optimizer.zero_grad()
                outputs = self.model(b_input_ids,
                                     token_type_ids=b_type_ids,
                                     attention_mask=b_input_mask)
                logits = outputs[0]

                loss = self.calculate_loss(logits, b_labels)

                training_loss.append(loss.item())
                loss.backward()
                torch.nn.utils.clip_grad_norm_(
                    self.model.parameters(),
                    self.hyper_dict["max_grad_norm"])  # ordering?
                optimizer.step()
                scheduler.step()  # ordering assumes  pytorch >= 1.1.0

            logging.info(
                f"Training loss: {sum(training_loss) / len(training_loss)}")
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The input data dir. Should contain the .csv files (or other data files) for the task.")
    parser.add_argument("--bert_model", default=None, type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
                        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
                        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument("--output_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The output directory where the model checkpoints will be written.")

    ## Other parameters
    parser.add_argument("--max_seq_length",
                        default=128,
                        type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_lower_case",
                        action='store_true',
                        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument('--fp16',
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--loss_scale',
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")

    args = parser.parse_args()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
        device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")

    #if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
        #raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        train_examples = read_swag_examples(os.path.join(args.data_dir, 'train.csv'), is_training = True)
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()

    # Prepare model
    cache_dir = os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(args.local_rank))
    predictor = BertForMultipleChoice.from_pretrained(args.bert_model,
        cache_dir=cache_dir,
        num_choices=4)
    # Use independently trained adversary
    output_model_file = os.path.join(args.output_dir, 'adversary_' + WEIGHTS_NAME)
    output_config_file = os.path.join(args.output_dir, 'adversary_' + CONFIG_NAME)
    config = BertConfig(output_config_file)
    adversary = BertForSequenceClassification(config, num_labels=2)
    adversary.load_state_dict(torch.load(output_model_file))  
    
    if args.fp16:
        predictor.half()
        adversary.half()
    predictor.to(device)
    adversary.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        predictor = DDP(predictor)
        adversary = DDP(adversary)
    elif n_gpu > 1:
        predictor = torch.nn.DataParallel(predictor)
        adversary = torch.nn.DataParallel(adversary)

    # Prepare optimizer
    param_optimizer_pred = list(predictor.named_parameters())
    
    # hack to remove pooler, which is not used
    # thus it produce None grad that break apex
    param_optimizer_pred = [n for n in param_optimizer_pred if 'pooler' not in n[0]]
    
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters_pred = [
        {'params': [p for n, p in param_optimizer_pred if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer_pred if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        optimizer_pred = FusedAdam(optimizer_grouped_parameters_pred,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)           
        if args.loss_scale == 0:
            optimizer_pred = FP16_Optimizer(optimizer_pred, dynamic_loss_scale=True)
        else:
            optimizer_pred = FP16_Optimizer(optimizer_pred, static_loss_scale=args.loss_scale)
    else:
        optimizer_pred = BertAdam(optimizer_grouped_parameters_pred,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    alpha = 1
    global_step = 0
    if args.do_train:
        train_features = convert_examples_to_features(
            train_examples, tokenizer, args.max_seq_length, True)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)
        all_input_ids = torch.tensor(select_field(train_features, 'input_ids'), dtype=torch.long)
        all_input_mask = torch.tensor(select_field(train_features, 'input_mask'), dtype=torch.long)
        all_segment_ids = torch.tensor(select_field(train_features, 'segment_ids'), dtype=torch.long)
        all_label = torch.tensor([f.label for f in train_features], dtype=torch.long)
        all_vp_input_ids = torch.tensor(select_field(train_features, 'vp_input_ids'), dtype=torch.long)
        all_vp_input_mask = torch.tensor(select_field(train_features, 'vp_input_mask'), dtype=torch.long)
        all_protected_attr = torch.tensor([f.protected_attr for f in train_features], dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label, all_vp_input_ids, all_vp_input_mask, all_protected_attr)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

        training_history = []
        predictor.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss_pred, tr_loss_adv = 0, 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids, vp_input_ids, vp_input_mask, protected_attr_ids = batch
                loss_pred, logits_pred = predictor(input_ids, segment_ids, input_mask, label_ids)
                softmax = torch.nn.functional.softmax(logits_pred, dim=1)

                # flatten vp ids and mask
                batch_size, num_choices = vp_input_ids.shape[0], vp_input_ids.shape[1]
                vp_input_ids = vp_input_ids.view([batch_size * num_choices, -1])
                vp_input_mask = vp_input_mask.view([batch_size * num_choices, -1])
                # repeat protected attribute number of choice times
                protected_attr_ids_ = protected_attr_ids.repeat(num_choices, 1).t()
                protected_attr_ids_ = protected_attr_ids_.reshape(-1)
                _, logits_adv = adversary(vp_input_ids, None, vp_input_mask, protected_attr_ids_)
                pos_probs = logits_adv.view([batch_size, num_choices, -1])[:,:,1]
                # perform a batch-wise dot product between positive probabilities and softmax vector
                dot_prod = torch.bmm(pos_probs.view([batch_size, 1, num_choices]), softmax.view([batch_size, num_choices, 1])).view([batch_size, 1])
                loss_adv = torch.nn.CrossEntropyLoss()(torch.cat([1 - dot_prod, dot_prod], dim=1), protected_attr_ids.view([-1]))
                
                if n_gpu > 1:
                    loss_pred = loss_pred.mean() # mean() to average on multi-gpu.
                    loss_adv = loss_adv.mean()
                if args.fp16 and args.loss_scale != 1.0:
                    # rescale loss for fp16 training
                    # see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
                    loss_pred = loss_pred * args.loss_scale
                    loss_adv = loss_adv * args.loss_scale
                if args.gradient_accumulation_steps > 1:
                    loss_pred = loss_pred / args.gradient_accumulation_steps
                    loss_adv = loss_adv / args.gradient_accumulation_steps
                tr_loss_pred += loss_pred.item()
                tr_loss_adv += loss_adv.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                
                training_history.append([loss_pred.item(), loss_adv.item()])
                loss = loss_pred - alpha * loss_adv
                if args.fp16:
                    optimizer_pred.backward(loss)
                else:
                    loss.backward()
                # if (step + 1) % args.gradient_accumulation_steps == 0:
                if args.fp16:
                    # modify learning rate with special warm up BERT uses
                    # if args.fp16 is False, BertAdam is used that handles this automatically
                    lr_this_step = args.learning_rate * warmup_linear(global_step/num_train_optimization_steps, args.warmup_proportion)
                    for param_group in optimizer_pred.param_groups:
                        param_group['lr'] = lr_this_step
                optimizer_pred.step()
                optimizer_pred.zero_grad()
                global_step += 1
        history_file = open(os.path.join(args.output_dir, "train_results.csv"), "w")
        writer = csv.writer(history_file, delimiter=",")
        writer.writerow(["pred_loss","adv_loss"])
        for row in training_history:
            writer.writerow(row)
    if args.do_train:
        # Save a trained model and the associated configuration
        model_to_save = predictor.module if hasattr(predictor, 'module') else predictor  # Only save the model it-self
        output_model_file = os.path.join(args.output_dir, 'predictor_' + WEIGHTS_NAME)
        torch.save(model_to_save.state_dict(), output_model_file)
        output_config_file = os.path.join(args.output_dir, 'predictor_' + CONFIG_NAME)
        with open(output_config_file, 'w') as f:
            f.write(model_to_save.config.to_json_string())
            
        # Load a trained model and config that you have fine-tuned
        config = BertConfig(output_config_file)
        predictor = BertForMultipleChoice(config, num_choices=4)
        predictor.load_state_dict(torch.load(output_model_file))
        
        # Do the same for adversary
        model_to_save = adversary.module if hasattr(adversary, 'module') else adversary  # Only save the model it-self
        output_model_file = os.path.join(args.output_dir, 'adversary_' + WEIGHTS_NAME)
        torch.save(model_to_save.state_dict(), output_model_file)
        output_config_file = os.path.join(args.output_dir, 'adversary_' + CONFIG_NAME)
        with open(output_config_file, 'w') as f:
            f.write(model_to_save.config.to_json_string())
            
        config = BertConfig(output_config_file)
        adversary = BertForSequenceClassification(config, num_labels=3)
        adversary.load_state_dict(torch.load(output_model_file))   
            
        
        
    else:
        output_model_file = os.path.join(args.output_dir, 'predictor_' + WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, 'predictor_' + CONFIG_NAME)
        config = BertConfig(output_config_file)
        predictor = BertForMultipleChoice(config, num_choices=4)
        predictor.load_state_dict(torch.load(output_model_file))
        
        output_model_file = os.path.join(args.output_dir, 'adversary_' + WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, 'adversary_' + CONFIG_NAME)
        config = BertConfig(output_config_file)
        adversary = BertForSequenceClassification(config, num_labels=2)
        adversary.load_state_dict(torch.load(output_model_file))
    predictor.to(device)
    adversary.to(device)


    if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        eval_examples = read_swag_examples(os.path.join(args.data_dir, 'val.csv'), is_training = True)
        eval_features = convert_examples_to_features(
            eval_examples, tokenizer, args.max_seq_length, True)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor(select_field(eval_features, 'input_ids'), dtype=torch.long)
        all_input_mask = torch.tensor(select_field(eval_features, 'input_mask'), dtype=torch.long)
        all_segment_ids = torch.tensor(select_field(eval_features, 'segment_ids'), dtype=torch.long)
        all_label = torch.tensor([f.label for f in eval_features], dtype=torch.long)
        all_vp_input_ids = torch.tensor(select_field(eval_features, 'vp_input_ids'), dtype=torch.long)
        all_vp_input_mask = torch.tensor(select_field(eval_features, 'vp_input_mask'), dtype=torch.long)
        all_protected_attr = torch.tensor([f.protected_attr for f in eval_features], dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label, all_vp_input_ids, all_vp_input_mask, all_protected_attr)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

        predictor.eval()
        adversary.eval()
        eval_loss_pred, eval_accuracy_pred = 0, 0
        eval_loss_adv, eval_accuracy_adv = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
        for input_ids, input_mask, segment_ids, label_ids, vp_input_ids, vp_input_mask, protected_attr_ids in eval_dataloader:
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)
            vp_input_ids = vp_input_ids.to(device)
            vp_input_mask = vp_input_mask.to(device)
            protected_attr_ids = protected_attr_ids.to(device)
            
            with torch.no_grad():
                tmp_eval_loss_pred, logits_pred = predictor(input_ids, segment_ids, input_mask, label_ids)
            predicted_vps = torch.argmax(logits_pred, dim=1)    
            predicted_vps = predicted_vps.view(-1, 1).repeat(1, vp_input_ids.size(2)).view([-1, 1, vp_input_ids.size(2)])
            vp_input_ids = torch.gather(vp_input_ids, dim=1, index=predicted_vps)
            vp_input_ids = vp_input_ids.view([vp_input_ids.size(0), -1])
            vp_input_mask = torch.gather(vp_input_mask, dim=1, index=predicted_vps)
            vp_input_mask = vp_input_mask.view([vp_input_mask.size(0), -1])
            with torch.no_grad():
                tmp_eval_loss_adv, logits_adv = adversary(vp_input_ids, None, vp_input_mask, protected_attr_ids)
            
            # print("logits_adv", logits_adv)
            tmp_eval_accuracy_pred = accuracy(logits_pred, label_ids)
            tmp_eval_accuracy_adv = accuracy(logits_adv, protected_attr_ids)
            

            eval_loss_pred += tmp_eval_loss_pred.mean().item()
            eval_accuracy_pred += tmp_eval_accuracy_pred.item()
            eval_loss_adv += tmp_eval_loss_adv.mean().item()
            eval_accuracy_adv += tmp_eval_accuracy_adv.item()

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        eval_loss_pred /= nb_eval_steps
        eval_accuracy_pred /= nb_eval_examples
        eval_loss_adv /= nb_eval_steps
        eval_accuracy_adv /= nb_eval_examples
        
        if args.do_train:
            result = {'eval_loss_pred': eval_loss_pred,
                      'eval_accuracy_pred': eval_accuracy_pred,
                      'eval_loss_adv': eval_loss_adv,
                      'eval_accuracy_adv': eval_accuracy_adv,
                      'global_step': global_step,
                      'loss_pred': tr_loss_pred/nb_tr_steps,
                      'loss_adv': tr_loss_adv/nb_tr_steps}
        else:
            result = {'eval_loss_pred': eval_loss_pred,
                      'eval_accuracy_pred': eval_accuracy_pred,
                      'eval_loss_adv': eval_loss_adv,
                      'eval_accuracy_adv': eval_accuracy_adv}

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))
示例#19
0
def train(args, train_dataset, model, tokenizer, labels, pad_token_label_id):
    """ Train the model """
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(
        train_dataset) if args.local_rank == -1 else DistributedSampler(
            train_dataset)
    train_dataloader = DataLoader(
        train_dataset,
        sampler=train_sampler,
        batch_size=args.train_batch_size,
    )
    best_dev_f1 = 0.0
    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (
            len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(
            train_dataloader
        ) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
    no_decay = ["bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [{
        "params": [
            p for n, p in model.named_parameters()
            if not any(nd in n for nd in no_decay)
        ],
        "weight_decay":
        args.weight_decay
    }, {
        "params": [
            p for n, p in model.named_parameters()
            if any(nd in n for nd in no_decay)
        ],
        "weight_decay":
        0.0
    }]
    # for crf might wanna change this to SGD with gradient clipping and my other scheduler **** eskiler adamken bile 1000lerden başlayıp 10lara düşüyo
    optimizer = AdamW(optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(
        optimizer,
        num_warmup_steps=args.warmup_steps,
        num_training_steps=t_total)
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model,
            device_ids=[args.local_rank],
            output_device=args.local_rank,
            find_unused_parameters=True)

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d",
                args.per_gpu_train_batch_size)
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size * args.gradient_accumulation_steps *
        (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
    logger.info("  Gradient Accumulation steps = %d",
                args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
    train_iterator = trange(int(args.num_train_epochs),
                            desc="Epoch",
                            disable=args.local_rank not in [-1, 0])
    set_seed(
        args)  # Added here for reproductibility (even between python 2 and 3)
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader,
                              desc="Iteration",
                              disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
            model.train()
            batch = tuple(t.to(args.device) for t in batch)
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "labels": batch[3]
            }
            if args.model_type != "distilbert":
                inputs["token_type_ids"] = batch[2] if args.model_type in [
                    "bert", "xlnet"
                ] else None  # XLM and RoBERTa don"t use segment_ids

            outputs = model(pad_token_label_id=pad_token_label_id, **inputs)
            loss = outputs[
                0]  # model outputs are always tuple in pytorch-transformers (see doc)

            if args.n_gpu > 1:
                loss = loss.mean(
                )  # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(
                        amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(),
                                                   args.max_grad_norm)

                optimizer.step()
                scheduler.step()  # Update learning rate schedule
                #optimizer.step()
                model.zero_grad()
                global_step += 1

                if args.local_rank in [
                        -1, 0
                ] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
                    if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average well
                        results, _ = evaluate(args,
                                              model,
                                              tokenizer,
                                              labels,
                                              pad_token_label_id,
                                              mode="dev")
                        if results['f1'] > best_dev_f1:
                            best_dev_f1 = results['f1']
                            results_test, _ = evaluate(args,
                                                       model,
                                                       tokenizer,
                                                       labels,
                                                       pad_token_label_id,
                                                       mode="test")
                            logger.info(
                                "test f1: %s, loss: %s",
                                str(results_test['f1']),
                                str(results_test['loss']),
                            )
                    logging_loss = tr_loss

                if args.local_rank in [
                        -1, 0
                ] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
                    output_dir = os.path.join(
                        args.output_dir, "checkpoint-{}".format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(
                        model, "module"
                    ) else model  # Take care of distributed/parallel training

                    logger.info("Saving model checkpoint to %s", output_dir)

                    model_save_path_ = os.path.join(output_dir,
                                                    "pytorch_model.bin")
                    torch.save(model_to_save.state_dict(), model_save_path_)
                    torch.save(args,
                               os.path.join(output_dir, "training_args.bin"))
                    logger.info("Saving model checkpoint to %s", output_dir)

                    torch.save(optimizer.state_dict(),
                               os.path.join(output_dir, "optimizer.pt"))
                    torch.save(scheduler.state_dict(),
                               os.path.join(output_dir, "scheduler.pt"))
                    logger.info("Saving optimizer and scheduler states to %s",
                                output_dir)

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    #/if args.local_rank in [-1, 0]:
    #tb_writer.close()

    return global_step, tr_loss / global_step
示例#20
0
def train(args, train_dataset, model, tokenizer):
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(
        train_dataset) if args.local_rank == -1 else DistributedSampler(
            train_dataset)
    train_dataloader = DataLoader(train_dataset,
                                  sampler=train_sampler,
                                  batch_size=args.train_batch_size)

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (
            len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(
            train_dataloader
        ) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
    no_decay = ["bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
        {
            "params": [
                p for n, p in model.named_parameters()
                if not any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            args.weight_decay,
        },
        {
            "params": [
                p for n, p in model.named_parameters()
                if any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            0.0
        },
    ]

    optimizer = AdamW(optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(
        optimizer,
        num_warmup_steps=args.warmup_steps,
        num_training_steps=t_total)

    # Check if saved optimizer or scheduler states exist
    if os.path.isfile(os.path.join(
            args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
                os.path.join(args.model_name_or_path, "scheduler.pt")):
        # Load in optimizer and scheduler states
        optimizer.load_state_dict(
            torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(
            torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model,
            device_ids=[args.local_rank],
            output_device=args.local_rank,
            find_unused_parameters=True,
        )

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d",
                args.per_gpu_train_batch_size)
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size * args.gradient_accumulation_steps *
        (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
    logger.info("  Gradient Accumulation steps = %d",
                args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    epochs_trained = 0
    steps_trained_in_current_epoch = 0

    # Check if continuing training from a checkpoint
    #in our case we will be loading up a pre-trained bert class
    if os.path.exists(args.model_name_or_path):
        # set global_step to global_step of last saved checkpoint from model path
        try:
            global_step = int(
                args.model_name_or_path.split("-")[-1].split("/")[0])
        except ValueError:
            global_step = 0
        epochs_trained = global_step // (len(train_dataloader) //
                                         args.gradient_accumulation_steps)
        steps_trained_in_current_epoch = global_step % (
            len(train_dataloader) // args.gradient_accumulation_steps)

        logger.info(
            "  Continuing training from checkpoint, will skip to saved global_step"
        )
        logger.info("  Continuing training from epoch %d", epochs_trained)
        logger.info("  Continuing training from global step %d", global_step)
        logger.info("  Will skip the first %d steps in the first epoch",
                    steps_trained_in_current_epoch)

    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
    train_iterator = trange(
        epochs_trained,
        int(args.num_train_epochs),
        desc="Epoch",
        disable=args.local_rank not in [-1, 0],
    )
    set_seed(args)  # Added here for reproductibility
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader,
                              desc="Iteration",
                              disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):

            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

            model.train()
            batch = tuple(t.to(args.device) for t in batch)
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "labels": batch[3]
            }
            if args.model_type != "distilbert":
                inputs["token_type_ids"] = (
                    batch[2]
                    if args.model_type in ["bert", "xlnet", "albert"] else None
                )  # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids
            outputs = model(**inputs)
            loss = outputs[
                0]  # model outputs are always tuple in transformers (see doc)

            if args.n_gpu > 1:
                loss = loss.mean(
                )  # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0 or (
                    # last step in epoch but step is always smaller than gradient_accumulation_steps
                    len(epoch_iterator) <= args.gradient_accumulation_steps and
                (step + 1) == len(epoch_iterator)):
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(
                        amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(),
                                                   args.max_grad_norm)

                optimizer.step()
                scheduler.step()  # Update learning rate schedule
                model.zero_grad()
                global_step += 1

                if args.local_rank in [
                        -1, 0
                ] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    logs = {}
                    if (
                            args.local_rank == -1
                            and args.evaluate_during_training
                    ):  # Only evaluate when single GPU otherwise metrics may not average well
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
                            eval_key = "eval_{}".format(key)
                            logs[eval_key] = value

                    loss_scalar = (tr_loss - logging_loss) / args.logging_steps
                    learning_rate_scalar = scheduler.get_lr()[0]
                    logs["learning_rate"] = learning_rate_scalar
                    logs["loss"] = loss_scalar
                    logging_loss = tr_loss

                    for key, value in logs.items():
                        tb_writer.add_scalar(key, value, global_step)
                    print(json.dumps({**logs, **{"step": global_step}}))

                if args.local_rank in [
                        -1, 0
                ] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
                    output_dir = os.path.join(
                        args.output_dir, "checkpoint-{}".format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    tokenizer.save_pretrained(output_dir)

                    torch.save(args,
                               os.path.join(output_dir, "training_args.bin"))
                    logger.info("Saving model checkpoint to %s", output_dir)

                    torch.save(optimizer.state_dict(),
                               os.path.join(output_dir, "optimizer.pt"))
                    torch.save(scheduler.state_dict(),
                               os.path.join(output_dir, "scheduler.pt"))
                    logger.info("Saving optimizer and scheduler states to %s",
                                output_dir)

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

    return global_step, tr_loss / global_step
示例#21
0
def train(args, train_dataset, model, tokenizer):
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(
        train_dataset) if args.local_rank == -1 else DistributedSampler(
            train_dataset)
    train_dataloader = DataLoader(train_dataset,
                                  sampler=train_sampler,
                                  batch_size=args.train_batch_size)

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (
            len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(
            train_dataloader
        ) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params': [
            p for n, p in model.named_parameters()
            if not any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        args.weight_decay
    }, {
        'params': [
            p for n, p in model.named_parameters()
            if any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        0.0
    }]

    optimizer = AdamW(optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(
        optimizer,
        num_warmup_steps=args.warmup_steps,
        num_training_steps=t_total)
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model,
            device_ids=[args.local_rank],
            output_device=args.local_rank,
            find_unused_parameters=True)

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d",
                args.per_gpu_train_batch_size)
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size * args.gradient_accumulation_steps *
        (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
    logger.info("  Gradient Accumulation steps = %d",
                args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
    train_iterator = trange(int(args.num_train_epochs),
                            desc="Epoch",
                            disable=args.local_rank not in [-1, 0])
    set_seed(
        args)  # Added here for reproductibility (even between python 2 and 3)
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader,
                              desc="Iteration",
                              disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
            model.train()
            batch = tuple(t.to(args.device) for t in batch)
            inputs = {
                'input_ids': batch[0],
                'attention_mask': batch[1],
                'labels': batch[3]
            }
            if args.model_type != 'distilbert':
                inputs['token_type_ids'] = batch[2] if args.model_type in [
                    'bert', 'xlnet'
                ] else None  # XLM, DistilBERT and RoBERTa don't use segment_ids
            outputs = model(**inputs)
            loss = outputs[
                0]  # model outputs are always tuple in transformers (see doc)

            if args.n_gpu > 1:
                loss = loss.mean(
                )  # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(
                        amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(),
                                                   args.max_grad_norm)

                optimizer.step()
                scheduler.step()  # Update learning rate schedule
                model.zero_grad()
                global_step += 1

                if args.local_rank in [
                        -1, 0
                ] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    logs = {}
                    if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average well
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
                            eval_key = 'eval_{}'.format(key)
                            logs[eval_key] = value

                    loss_scalar = (tr_loss - logging_loss) / args.logging_steps
                    learning_rate_scalar = scheduler.get_lr()[0]
                    logs['learning_rate'] = learning_rate_scalar
                    logs['loss'] = loss_scalar
                    logging_loss = tr_loss

                    for key, value in logs.items():
                        tb_writer.add_scalar(key, value, global_step)
                    print(json.dumps({**logs, **{'step': global_step}}))

                if args.local_rank in [
                        -1, 0
                ] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
                    output_dir = os.path.join(
                        args.output_dir, 'checkpoint-{}'.format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(
                        model, 'module'
                    ) else model  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    torch.save(args,
                               os.path.join(output_dir, 'training_args.bin'))
                    logger.info("Saving model checkpoint to %s", output_dir)

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

    return global_step, tr_loss / global_step
示例#22
0
    def train(
        self,
        train_dataset,
        output_dir,
        show_running_loss=True,
        eval_data=None,
        verbose=True,
        **kwargs,
    ):
        """
        Trains the model on train_dataset.

        Utility function to be used by the train_model() method. Not intended to be used directly.
        """

        model = self.model
        args = self.args
        device = self.device

        tb_writer = SummaryWriter(logdir=args.tensorboard_dir)
        train_sampler = RandomSampler(train_dataset)
        train_dataloader = DataLoader(
            train_dataset,
            sampler=train_sampler,
            batch_size=args.train_batch_size,
            num_workers=self.args.dataloader_num_workers,
        )

        if args.max_steps > 0:
            t_total = args.max_steps
            args.num_train_epochs = args.max_steps // (
                len(train_dataloader) // args.gradient_accumulation_steps) + 1
        else:
            t_total = len(
                train_dataloader
            ) // args.gradient_accumulation_steps * args.num_train_epochs

        no_decay = ["bias", "LayerNorm.weight"]

        optimizer_grouped_parameters = []
        custom_parameter_names = set()
        for group in self.args.custom_parameter_groups:
            params = group.pop("params")
            custom_parameter_names.update(params)
            param_group = {**group}
            param_group["params"] = [
                p for n, p in model.named_parameters() if n in params
            ]
            optimizer_grouped_parameters.append(param_group)

        for group in self.args.custom_layer_parameters:
            layer_number = group.pop("layer")
            layer = f"layer.{layer_number}."
            group_d = {**group}
            group_nd = {**group}
            group_nd["weight_decay"] = 0.0
            params_d = []
            params_nd = []
            for n, p in model.named_parameters():
                if n not in custom_parameter_names and layer in n:
                    if any(nd in n for nd in no_decay):
                        params_nd.append(p)
                    else:
                        params_d.append(p)
                    custom_parameter_names.add(n)
            group_d["params"] = params_d
            group_nd["params"] = params_nd

            optimizer_grouped_parameters.append(group_d)
            optimizer_grouped_parameters.append(group_nd)

        if not self.args.train_custom_parameters_only:
            optimizer_grouped_parameters.extend([
                {
                    "params": [
                        p for n, p in model.named_parameters()
                        if n not in custom_parameter_names and not any(
                            nd in n for nd in no_decay)
                    ],
                    "weight_decay":
                    args.weight_decay,
                },
                {
                    "params": [
                        p for n, p in model.named_parameters()
                        if n not in custom_parameter_names and any(
                            nd in n for nd in no_decay)
                    ],
                    "weight_decay":
                    0.0,
                },
            ])

        warmup_steps = math.ceil(t_total * args.warmup_ratio)
        args.warmup_steps = warmup_steps if args.warmup_steps == 0 else args.warmup_steps

        if args.optimizer == "AdamW":
            optimizer = AdamW(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              eps=args.adam_epsilon)
        elif args.optimizer == "Adafactor":
            optimizer = Adafactor(
                optimizer_grouped_parameters,
                lr=args.learning_rate,
                eps=args.adafactor_eps,
                clip_threshold=args.adafactor_clip_threshold,
                decay_rate=args.adafactor_decay_rate,
                beta1=args.adafactor_beta1,
                weight_decay=args.weight_decay,
                scale_parameter=args.adafactor_scale_parameter,
                relative_step=args.adafactor_relative_step,
                warmup_init=args.adafactor_warmup_init,
            )
            print("Using Adafactor for T5")
        else:
            raise ValueError(
                "{} is not a valid optimizer class. Please use one of ('AdamW', 'Adafactor') instead."
                .format(args.optimizer))

        if args.scheduler == "constant_schedule":
            scheduler = get_constant_schedule(optimizer)

        elif args.scheduler == "constant_schedule_with_warmup":
            scheduler = get_constant_schedule_with_warmup(
                optimizer, num_warmup_steps=args.warmup_steps)

        elif args.scheduler == "linear_schedule_with_warmup":
            scheduler = get_linear_schedule_with_warmup(
                optimizer,
                num_warmup_steps=args.warmup_steps,
                num_training_steps=t_total)

        elif args.scheduler == "cosine_schedule_with_warmup":
            scheduler = get_cosine_schedule_with_warmup(
                optimizer,
                num_warmup_steps=args.warmup_steps,
                num_training_steps=t_total,
                num_cycles=args.cosine_schedule_num_cycles,
            )

        elif args.scheduler == "cosine_with_hard_restarts_schedule_with_warmup":
            scheduler = get_cosine_with_hard_restarts_schedule_with_warmup(
                optimizer,
                num_warmup_steps=args.warmup_steps,
                num_training_steps=t_total,
                num_cycles=args.cosine_schedule_num_cycles,
            )

        elif args.scheduler == "polynomial_decay_schedule_with_warmup":
            scheduler = get_polynomial_decay_schedule_with_warmup(
                optimizer,
                num_warmup_steps=args.warmup_steps,
                num_training_steps=t_total,
                lr_end=args.polynomial_decay_schedule_lr_end,
                power=args.polynomial_decay_schedule_power,
            )

        else:
            raise ValueError("{} is not a valid scheduler.".format(
                args.scheduler))

        if (args.model_name and os.path.isfile(
                os.path.join(args.model_name, "optimizer.pt"))
                and os.path.isfile(
                    os.path.join(args.model_name, "scheduler.pt"))):
            # Load in optimizer and scheduler states
            optimizer.load_state_dict(
                torch.load(os.path.join(args.model_name, "optimizer.pt")))
            scheduler.load_state_dict(
                torch.load(os.path.join(args.model_name, "scheduler.pt")))

        if args.n_gpu > 1:
            model = torch.nn.DataParallel(model)

        logger.info(" Training started")

        global_step = 0
        training_progress_scores = None
        tr_loss, logging_loss = 0.0, 0.0
        model.zero_grad()
        train_iterator = trange(int(args.num_train_epochs),
                                desc="Epoch",
                                disable=args.silent,
                                mininterval=0)
        epoch_number = 0
        best_eval_metric = None
        early_stopping_counter = 0
        steps_trained_in_current_epoch = 0
        epochs_trained = 0

        if args.model_name and os.path.exists(args.model_name):
            try:
                # set global_step to gobal_step of last saved checkpoint from model path
                checkpoint_suffix = args.model_name.split("/")[-1].split("-")
                if len(checkpoint_suffix) > 2:
                    checkpoint_suffix = checkpoint_suffix[1]
                else:
                    checkpoint_suffix = checkpoint_suffix[-1]
                global_step = int(checkpoint_suffix)
                epochs_trained = global_step // (
                    len(train_dataloader) // args.gradient_accumulation_steps)
                steps_trained_in_current_epoch = global_step % (
                    len(train_dataloader) // args.gradient_accumulation_steps)

                logger.info(
                    "   Continuing training from checkpoint, will skip to saved global_step"
                )
                logger.info("   Continuing training from epoch %d",
                            epochs_trained)
                logger.info("   Continuing training from global step %d",
                            global_step)
                logger.info(
                    "   Will skip the first %d steps in the current epoch",
                    steps_trained_in_current_epoch)
            except ValueError:
                logger.info("   Starting fine-tuning.")

        if args.evaluate_during_training:
            training_progress_scores = self._create_training_progress_scores(
                **kwargs)

        if args.wandb_project:
            wandb.init(project=args.wandb_project,
                       config={**asdict(args)},
                       **args.wandb_kwargs)
            wandb.watch(self.model)

        if args.fp16:
            from torch.cuda import amp

            scaler = amp.GradScaler()

        for current_epoch in train_iterator:
            model.train()
            if epochs_trained > 0:
                epochs_trained -= 1
                continue
            train_iterator.set_description(
                f"Epoch {epoch_number + 1} of {args.num_train_epochs}")
            batch_iterator = tqdm(
                train_dataloader,
                desc=f"Running Epoch {epoch_number} of {args.num_train_epochs}",
                disable=args.silent,
                mininterval=0,
            )
            for step, batch in enumerate(batch_iterator):
                if steps_trained_in_current_epoch > 0:
                    steps_trained_in_current_epoch -= 1
                    continue
                batch = tuple(t.to(device) for t in batch)

                inputs = self._get_inputs_dict(batch)
                if args.fp16:
                    with amp.autocast():
                        outputs = model(**inputs)
                        # model outputs are always tuple in pytorch-transformers (see doc)
                        loss = outputs[0]
                else:
                    outputs = model(**inputs)
                    # model outputs are always tuple in pytorch-transformers (see doc)
                    loss = outputs[0]

                if args.n_gpu > 1:
                    loss = loss.mean(
                    )  # mean() to average on multi-gpu parallel training

                current_loss = loss.item()

                if show_running_loss:
                    batch_iterator.set_description(
                        f"Epochs {epoch_number}/{args.num_train_epochs}. Running Loss: {current_loss:9.4f}"
                    )

                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    scaler.scale(loss).backward()
                else:
                    loss.backward()

                tr_loss += loss.item()
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        scaler.unscale_(optimizer)
                    if args.optimizer == "AdamW":
                        torch.nn.utils.clip_grad_norm_(model.parameters(),
                                                       args.max_grad_norm)

                    if args.fp16:
                        scaler.step(optimizer)
                        scaler.update()
                    else:
                        optimizer.step()
                    scheduler.step()  # Update learning rate schedule
                    model.zero_grad()
                    global_step += 1

                    if args.logging_steps > 0 and global_step % args.logging_steps == 0:
                        # Log metrics
                        tb_writer.add_scalar("lr",
                                             scheduler.get_last_lr()[0],
                                             global_step)
                        tb_writer.add_scalar("loss", (tr_loss - logging_loss) /
                                             args.logging_steps, global_step)
                        logging_loss = tr_loss
                        if args.wandb_project or self.is_sweeping:
                            wandb.log({
                                "Training loss": current_loss,
                                "lr": scheduler.get_last_lr()[0],
                                "global_step": global_step,
                            })

                    if args.save_steps > 0 and global_step % args.save_steps == 0:
                        # Save model checkpoint
                        output_dir_current = os.path.join(
                            output_dir, "checkpoint-{}".format(global_step))

                        self.save_model(output_dir_current,
                                        optimizer,
                                        scheduler,
                                        model=model)

                    if args.evaluate_during_training and (
                            args.evaluate_during_training_steps > 0
                            and global_step %
                            args.evaluate_during_training_steps == 0):
                        # Only evaluate when single GPU otherwise metrics may not average well
                        results = self.eval_model(
                            eval_data,
                            verbose=verbose
                            and args.evaluate_during_training_verbose,
                            silent=args.evaluate_during_training_silent,
                            **kwargs,
                        )
                        for key, value in results.items():
                            tb_writer.add_scalar("eval_{}".format(key), value,
                                                 global_step)

                        output_dir_current = os.path.join(
                            output_dir, "checkpoint-{}".format(global_step))

                        if args.save_eval_checkpoints:
                            self.save_model(output_dir_current,
                                            optimizer,
                                            scheduler,
                                            model=model,
                                            results=results)

                        training_progress_scores["global_step"].append(
                            global_step)
                        training_progress_scores["train_loss"].append(
                            current_loss)
                        for key in results:
                            training_progress_scores[key].append(results[key])
                        report = pd.DataFrame(training_progress_scores)
                        report.to_csv(
                            os.path.join(args.output_dir,
                                         "training_progress_scores.csv"),
                            index=False,
                        )

                        if args.wandb_project or self.is_sweeping:
                            wandb.log(
                                self._get_last_metrics(
                                    training_progress_scores))

                        if not best_eval_metric:
                            best_eval_metric = results[
                                args.early_stopping_metric]
                            self.save_model(args.best_model_dir,
                                            optimizer,
                                            scheduler,
                                            model=model,
                                            results=results)
                        if best_eval_metric and args.early_stopping_metric_minimize:
                            if results[
                                    args.
                                    early_stopping_metric] - best_eval_metric < args.early_stopping_delta:
                                best_eval_metric = results[
                                    args.early_stopping_metric]
                                self.save_model(args.best_model_dir,
                                                optimizer,
                                                scheduler,
                                                model=model,
                                                results=results)
                                early_stopping_counter = 0
                            else:
                                if args.use_early_stopping:
                                    if early_stopping_counter < args.early_stopping_patience:
                                        early_stopping_counter += 1
                                        if verbose:
                                            logger.info(
                                                f" No improvement in {args.early_stopping_metric}"
                                            )
                                            logger.info(
                                                f" Current step: {early_stopping_counter}"
                                            )
                                            logger.info(
                                                f" Early stopping patience: {args.early_stopping_patience}"
                                            )
                                    else:
                                        if verbose:
                                            logger.info(
                                                f" Patience of {args.early_stopping_patience} steps reached"
                                            )
                                            logger.info(
                                                " Training terminated.")
                                            train_iterator.close()
                                        return (
                                            global_step,
                                            tr_loss / global_step if not self.
                                            args.evaluate_during_training else
                                            training_progress_scores,
                                        )
                        else:
                            if results[
                                    args.
                                    early_stopping_metric] - best_eval_metric > args.early_stopping_delta:
                                best_eval_metric = results[
                                    args.early_stopping_metric]
                                self.save_model(args.best_model_dir,
                                                optimizer,
                                                scheduler,
                                                model=model,
                                                results=results)
                                early_stopping_counter = 0
                            else:
                                if args.use_early_stopping:
                                    if early_stopping_counter < args.early_stopping_patience:
                                        early_stopping_counter += 1
                                        if verbose:
                                            logger.info(
                                                f" No improvement in {args.early_stopping_metric}"
                                            )
                                            logger.info(
                                                f" Current step: {early_stopping_counter}"
                                            )
                                            logger.info(
                                                f" Early stopping patience: {args.early_stopping_patience}"
                                            )
                                    else:
                                        if verbose:
                                            logger.info(
                                                f" Patience of {args.early_stopping_patience} steps reached"
                                            )
                                            logger.info(
                                                " Training terminated.")
                                            train_iterator.close()
                                        return (
                                            global_step,
                                            tr_loss / global_step if not self.
                                            args.evaluate_during_training else
                                            training_progress_scores,
                                        )
                        model.train()

            epoch_number += 1
            output_dir_current = os.path.join(
                output_dir,
                "checkpoint-{}-epoch-{}".format(global_step, epoch_number))

            if args.save_model_every_epoch or args.evaluate_during_training:
                os.makedirs(output_dir_current, exist_ok=True)

            if args.save_model_every_epoch:
                self.save_model(output_dir_current,
                                optimizer,
                                scheduler,
                                model=model)

            if args.evaluate_during_training and args.evaluate_each_epoch:
                results = self.eval_model(
                    eval_data,
                    verbose=verbose and args.evaluate_during_training_verbose,
                    silent=args.evaluate_during_training_silent,
                    **kwargs,
                )

                if args.save_eval_checkpoints:
                    self.save_model(output_dir_current,
                                    optimizer,
                                    scheduler,
                                    results=results)

                training_progress_scores["global_step"].append(global_step)
                training_progress_scores["train_loss"].append(current_loss)
                for key in results:
                    training_progress_scores[key].append(results[key])
                report = pd.DataFrame(training_progress_scores)
                report.to_csv(os.path.join(args.output_dir,
                                           "training_progress_scores.csv"),
                              index=False)

                if args.wandb_project or self.is_sweeping:
                    wandb.log(self._get_last_metrics(training_progress_scores))

                if not best_eval_metric:
                    best_eval_metric = results[args.early_stopping_metric]
                    self.save_model(args.best_model_dir,
                                    optimizer,
                                    scheduler,
                                    model=model,
                                    results=results)
                if best_eval_metric and args.early_stopping_metric_minimize:
                    if results[
                            args.
                            early_stopping_metric] - best_eval_metric < args.early_stopping_delta:
                        best_eval_metric = results[args.early_stopping_metric]
                        self.save_model(args.best_model_dir,
                                        optimizer,
                                        scheduler,
                                        model=model,
                                        results=results)
                        early_stopping_counter = 0
                    else:
                        if args.use_early_stopping and args.early_stopping_consider_epochs:
                            if early_stopping_counter < args.early_stopping_patience:
                                early_stopping_counter += 1
                                if verbose:
                                    logger.info(
                                        f" No improvement in {args.early_stopping_metric}"
                                    )
                                    logger.info(
                                        f" Current step: {early_stopping_counter}"
                                    )
                                    logger.info(
                                        f" Early stopping patience: {args.early_stopping_patience}"
                                    )
                            else:
                                if verbose:
                                    logger.info(
                                        f" Patience of {args.early_stopping_patience} steps reached"
                                    )
                                    logger.info(" Training terminated.")
                                    train_iterator.close()
                                return (
                                    global_step,
                                    tr_loss / global_step
                                    if not self.args.evaluate_during_training
                                    else training_progress_scores,
                                )
                else:
                    if results[
                            args.
                            early_stopping_metric] - best_eval_metric > args.early_stopping_delta:
                        best_eval_metric = results[args.early_stopping_metric]
                        self.save_model(args.best_model_dir,
                                        optimizer,
                                        scheduler,
                                        model=model,
                                        results=results)
                        early_stopping_counter = 0
                    else:
                        if args.use_early_stopping and args.early_stopping_consider_epochs:
                            if early_stopping_counter < args.early_stopping_patience:
                                early_stopping_counter += 1
                                if verbose:
                                    logger.info(
                                        f" No improvement in {args.early_stopping_metric}"
                                    )
                                    logger.info(
                                        f" Current step: {early_stopping_counter}"
                                    )
                                    logger.info(
                                        f" Early stopping patience: {args.early_stopping_patience}"
                                    )
                            else:
                                if verbose:
                                    logger.info(
                                        f" Patience of {args.early_stopping_patience} steps reached"
                                    )
                                    logger.info(" Training terminated.")
                                    train_iterator.close()
                                return (
                                    global_step,
                                    tr_loss / global_step
                                    if not self.args.evaluate_during_training
                                    else training_progress_scores,
                                )

        return (
            global_step,
            tr_loss / global_step if not self.args.evaluate_during_training
            else training_progress_scores,
        )
示例#23
0
 def __iter__(self):
     for index in RandomSampler.__iter__(self):
         yield self.data_source[index]
示例#24
0
def train(args, train_dataset, model: PreTrainedModel,
          tokenizer: PreTrainedTokenizer) -> Tuple[int, float]:
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)

    def collate(examples: List[torch.Tensor]):
        if tokenizer._pad_token is None:
            return pad_sequence(examples, batch_first=True)
        return pad_sequence(examples,
                            batch_first=True,
                            padding_value=tokenizer.pad_token_id)

    train_sampler = RandomSampler(
        train_dataset) if args.local_rank == -1 else DistributedSampler(
            train_dataset)
    train_dataloader = DataLoader(train_dataset,
                                  sampler=train_sampler,
                                  batch_size=args.train_batch_size,
                                  collate_fn=collate)

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (
            len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(
            train_dataloader
        ) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
    no_decay = ["bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
        {
            "params": [
                p for n, p in model.named_parameters()
                if not any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            args.weight_decay,
        },
        {
            "params": [
                p for n, p in model.named_parameters()
                if any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            0.0
        },
    ]
    optimizer = AdamW(optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(
        optimizer,
        num_warmup_steps=args.warmup_steps,
        num_training_steps=t_total)

    # Check if saved optimizer or scheduler states exist
    if (args.model_name_or_path and os.path.isfile(
            os.path.join(args.model_name_or_path, "optimizer.pt"))
            and os.path.isfile(
                os.path.join(args.model_name_or_path, "scheduler.pt"))):
        # Load in optimizer and scheduler states
        optimizer.load_state_dict(
            torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(
            torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))

    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model,
            device_ids=[args.local_rank],
            output_device=args.local_rank,
            find_unused_parameters=True)

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d",
                args.per_gpu_train_batch_size)
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size * args.gradient_accumulation_steps *
        (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
    logger.info("  Gradient Accumulation steps = %d",
                args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    epochs_trained = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if args.model_name_or_path and os.path.exists(args.model_name_or_path):
        try:
            # set global_step to gobal_step of last saved checkpoint from model path
            checkpoint_suffix = args.model_name_or_path.split("-")[-1].split(
                "/")[0]
            global_step = int(checkpoint_suffix)
            epochs_trained = global_step // (len(train_dataloader) //
                                             args.gradient_accumulation_steps)
            steps_trained_in_current_epoch = global_step % (
                len(train_dataloader) // args.gradient_accumulation_steps)

            logger.info(
                "  Continuing training from checkpoint, will skip to saved global_step"
            )
            logger.info("  Continuing training from epoch %d", epochs_trained)
            logger.info("  Continuing training from global step %d",
                        global_step)
            logger.info("  Will skip the first %d steps in the first epoch",
                        steps_trained_in_current_epoch)
        except ValueError:
            logger.info("  Starting fine-tuning.")

    tr_loss, logging_loss = 0.0, 0.0

    model_to_resize = model.module if hasattr(
        model,
        "module") else model  # Take care of distributed/parallel training
    model_to_resize.resize_token_embeddings(len(tokenizer))

    model.zero_grad()
    train_iterator = trange(epochs_trained,
                            int(args.num_train_epochs),
                            desc="Epoch",
                            disable=args.local_rank not in [-1, 0])
    set_seed(args)  # Added here for reproducibility
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader,
                              desc="Iteration",
                              disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):

            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

            inputs, labels = mask_tokens(batch, tokenizer,
                                         args) if args.mlm else (batch, batch)
            inputs = inputs.to(args.device)
            labels = labels.to(args.device)
            model.train()
            outputs = model(inputs,
                            masked_lm_labels=labels) if args.mlm else model(
                                inputs, labels=labels)
            loss = outputs[
                0]  # model outputs are always tuple in transformers (see doc)

            if args.n_gpu > 1:
                loss = loss.mean(
                )  # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(
                        amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(),
                                                   args.max_grad_norm)
                optimizer.step()
                scheduler.step()  # Update learning rate schedule
                model.zero_grad()
                global_step += 1

                if args.local_rank in [
                        -1, 0
                ] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
                    if (
                            args.local_rank == -1
                            and args.evaluate_during_training
                    ):  # Only evaluate when single GPU otherwise metrics may not average well
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
                            tb_writer.add_scalar("eval_{}".format(key), value,
                                                 global_step)
                    tb_writer.add_scalar("lr",
                                         scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar("loss", (tr_loss - logging_loss) /
                                         args.logging_steps, global_step)
                    logging_loss = tr_loss

                if args.local_rank in [
                        -1, 0
                ] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    checkpoint_prefix = "checkpoint"
                    # Save model checkpoint
                    output_dir = os.path.join(
                        args.output_dir,
                        "{}-{}".format(checkpoint_prefix, global_step))
                    os.makedirs(output_dir, exist_ok=True)
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    tokenizer.save_pretrained(output_dir)

                    torch.save(args,
                               os.path.join(output_dir, "training_args.bin"))
                    logger.info("Saving model checkpoint to %s", output_dir)

                    _rotate_checkpoints(args, checkpoint_prefix)

                    torch.save(optimizer.state_dict(),
                               os.path.join(output_dir, "optimizer.pt"))
                    torch.save(scheduler.state_dict(),
                               os.path.join(output_dir, "scheduler.pt"))
                    logger.info("Saving optimizer and scheduler states to %s",
                                output_dir)

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

    return global_step, tr_loss / global_step
示例#25
0
def main():
    args = configure()
    log_configuration(args)
    print(args)
    #import ipdb
    #ipdb.set_trace()

    model, parameters = create_model(args, args.model, pretrain_path=args.pretrain_path)
    optimizer, scheduler = setup_solver(args, parameters)

    if args.resume_path:
        print('loading checkpoint {}'.format(args.resume_path))
        checkpoint = torch.load(str(args.resume_path))
        load_state(model, checkpoint['state_dict'])

        if args.resume_train:
            args.begin_epoch = checkpoint['epoch']
            if not args.train and checkpoint.get('optimizer') is not None:
                optimizer.load_state_dict(checkpoint['optimizer'])

    if args.onnx:
        export_onnx(args, model, args.onnx)
        return

    criterion = create_criterion(args)
    train_data, val_data, test_data = setup_dataset(args, args.train, args.val, args.test)

    if args.train or args.val:
        val_loader = torch.utils.data.DataLoader(
            val_data,
            batch_size=args.batch_size,
            shuffle=False,
            num_workers=args.n_threads,
            pin_memory=True,
            drop_last=False
        )

    if args.train:
        if args.weighted_sampling:
            class_weights = getattr(args, 'class_weights', None)
            sampler = WeightedRandomSampler(train_data.get_sample_weights(class_weights), len(train_data))
        else:
            sampler = RandomSampler(train_data)

        train_loader = torch.utils.data.DataLoader(
            train_data,
            batch_size=args.batch_size,
            sampler=sampler,
            num_workers=args.n_threads,
            pin_memory=True,
            drop_last=args.sync_bn
        )

        log_training_setup(model, train_data, val_data, optimizer, scheduler)

        train(args, model, train_loader, val_loader, criterion, optimizer, scheduler, args.logger)

    if not args.train and args.val:
        with torch.no_grad():
            validate(args, args.begin_epoch, val_loader, model, criterion, args.logger)
    print(args.sample_size)
    print(args.norm_value)
    print(args.mean_norm)
    print(args.std_norm)
    if args.test:
        test_loader = torch.utils.data.DataLoader(
            test_data,
            batch_size=args.batch_size,
            shuffle=False,
            num_workers=args.n_threads,
            pin_memory=True
        )

        with torch.no_grad():
            with args.logger.scope():
                test(args, test_loader, model, args.logger)
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--train_corpus",
                        default=None,
                        type=str,
                        required=True,
                        help="The input train corpus.")
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese."
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run evaluation.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--learning_rate",
                        default=3e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument(
        "--on_memory",
        action='store_true',
        help="Whether to load train samples into memory or use disk")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help=
        "Whether to lower case the input text. True for uncased models, False for cased models."
    )
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumualte before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")

    args = parser.parse_args()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train:
        raise ValueError(
            "Training is currently the only implemented execution option. Please set `do_train`."
        )

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)

    #train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        print("Loading Train Dataset", args.train_corpus)
        train_dataset = BERTDataset(args.train_corpus,
                                    tokenizer,
                                    seq_len=args.max_seq_length,
                                    corpus_lines=None,
                                    on_memory=args.on_memory)
        num_train_optimization_steps = int(
            len(train_dataset) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    # Prepare model
    model = BertForPreTraining.from_pretrained(args.bert_model)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )
        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    #######Modify the architecture here!

    # Prepare optimizer
    if args.do_train:
        param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]

        if args.fp16:
            try:
                from apex.optimizers import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError(
                    "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
                )

            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=args.learning_rate,
                                  bias_correction=False,
                                  max_grad_norm=1.0)
            if args.loss_scale == 0:
                optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            else:
                optimizer = FP16_Optimizer(optimizer,
                                           static_loss_scale=args.loss_scale)
            warmup_linear = WarmupLinearSchedule(
                warmup=args.warmup_proportion,
                t_total=num_train_optimization_steps)

        else:
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=args.learning_rate,
                                 warmup=args.warmup_proportion,
                                 t_total=num_train_optimization_steps)

    global_step = 0
    if args.do_train:
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_dataset))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)

        if args.local_rank == -1:
            train_sampler = RandomSampler(train_dataset)
        else:
            #TODO: check if this works with current data generator from disk that relies on next(file)
            # (it doesn't return item back by index)
            train_sampler = DistributedSampler(train_dataset)
        train_dataloader = DataLoader(train_dataset,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, lm_label_ids, is_next = batch
                loss = model(input_ids, segment_ids, input_mask, lm_label_ids,
                             is_next)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(
                            global_step, args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

        # Save a trained model
        logger.info("** ** * Saving fine - tuned model ** ** * ")
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
        if args.do_train:
            torch.save(model_to_save.state_dict(), output_model_file)
            model_to_save.config.to_json_file(output_config_file)
            tokenizer.save_vocabulary(args.output_dir)
示例#27
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument(
        "--finetuned_model_dir",
        default=None,
        type=str,
        help="Bert fine-tuned language model dir using domain corpus")
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help=
        "Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_predict",
                        action='store_true',
                        help="Whether to run eval on the test set.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    args = parser.parse_args()

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    processors = {
        "cola": ColaProcessor,
        "mnli": MnliProcessor,
        "mnli-mm": MnliMismatchedProcessor,
        "mrpc": MrpcProcessor,
        "sst-2": Sst2Processor,
        "sts-b": StsbProcessor,
        "qqp": QqpProcessor,
        "qnli": QnliProcessor,
        "rte": RteProcessor,
        "wnli": WnliProcessor,
        "demo": DemoProcessor,
    }

    output_modes = {
        "cola": "classification",
        "mnli": "classification",
        "mrpc": "classification",
        "sst-2": "classification",
        "sts-b": "regression",
        "qqp": "classification",
        "qnli": "classification",
        "rte": "classification",
        "wnli": "classification",
        "demo": "classification",
    }

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')

    logging.basicConfig(
        format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
        datefmt='%m/%d/%Y %H:%M:%S',
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)

    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
    args.seed = random.randint(1, 200)
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    task_name = args.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
    output_mode = output_modes[task_name]

    label_list = processor.get_labels()
    num_labels = len(label_list)
    #if args.finetuned_model_dir is not None:
    #    tokenizer = BertTokenizer.from_pretrained(args.finetuned_model_dir, do_lower_case=args.do_lower_case)
    #else:
    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_optimization_steps = 0
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    # Prepare model
    cache_dir = args.cache_dir if args.cache_dir else os.path.join(
        str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(
            args.local_rank))
    if args.finetuned_model_dir is not None:
        model = BertForSequenceClassification.from_pretrained(
            args.finetuned_model_dir, num_labels=num_labels)
    else:
        model = BertForSequenceClassification.from_pretrained(
            args.bert_model, cache_dir=cache_dir, num_labels=num_labels)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)
        #model = torch.nn.parallel.data_parallel(model)
    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)
        warmup_linear = WarmupLinearSchedule(
            warmup=args.warmup_proportion,
            t_total=num_train_optimization_steps)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    global_step = 0
    nb_tr_steps = 0
    tr_loss = 0
    if args.do_train:
        train_features = convert_examples_to_features(train_examples,
                                                      label_list,
                                                      args.max_seq_length,
                                                      tokenizer, output_mode)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)

        if output_mode == "classification":
            all_label_ids = torch.tensor([f.label_id for f in train_features],
                                         dtype=torch.long)
        elif output_mode == "regression":
            all_label_ids = torch.tensor([f.label_id for f in train_features],
                                         dtype=torch.float)

        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch

                # define a new function to compute loss values for both output_modes
                logits = model(input_ids, segment_ids, input_mask, labels=None)

                if output_mode == "classification":
                    loss_fct = CrossEntropyLoss()
                    loss = loss_fct(logits.view(-1, num_labels),
                                    label_ids.view(-1))
                elif output_mode == "regression":
                    loss_fct = MSELoss()
                    loss = loss_fct(logits.view(-1), label_ids.view(-1))

                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(
                            global_step / num_train_optimization_steps,
                            args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

    if args.do_train and (args.local_rank == -1
                          or torch.distributed.get_rank() == 0):
        # Save a trained model, configuration and tokenizer
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self

        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)

        torch.save(model_to_save.state_dict(), output_model_file)
        model_to_save.config.to_json_file(output_config_file)
        tokenizer.save_vocabulary(args.output_dir)

        # Load a trained model and vocabulary that you have fine-tuned
        model = BertForSequenceClassification.from_pretrained(
            args.output_dir, num_labels=num_labels)
        tokenizer = BertTokenizer.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case)
    else:
        model = BertForSequenceClassification.from_pretrained(
            args.bert_model, num_labels=num_labels)
    model.to(device)

    if args.do_eval and (args.local_rank == -1
                         or torch.distributed.get_rank() == 0):
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(eval_examples, label_list,
                                                     args.max_seq_length,
                                                     tokenizer, output_mode)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)

        if output_mode == "classification":
            all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                         dtype=torch.long)
        elif output_mode == "regression":
            all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                         dtype=torch.float)

        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        # Load a trained model and vocabulary that you have fine-tuned
        # model = BertForSequenceClassification.from_pretrained(args.output_dir, num_labels=num_labels)
        # tokenizer = BertTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)

        model.eval()
        eval_loss = 0
        nb_eval_steps = 0
        preds = []

        for input_ids, input_mask, segment_ids, label_ids in tqdm(
                eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                logits = model(input_ids, segment_ids, input_mask, labels=None)

            # create eval loss and other metric required by the task
            if output_mode == "classification":
                loss_fct = CrossEntropyLoss()
                tmp_eval_loss = loss_fct(logits.view(-1, num_labels),
                                         label_ids.view(-1))
            elif output_mode == "regression":
                loss_fct = MSELoss()
                tmp_eval_loss = loss_fct(logits.view(-1), label_ids.view(-1))

            eval_loss += tmp_eval_loss.mean().item()
            nb_eval_steps += 1
            if len(preds) == 0:
                preds.append(logits.detach().cpu().numpy())
            else:
                preds[0] = np.append(preds[0],
                                     logits.detach().cpu().numpy(),
                                     axis=0)

        eval_loss = eval_loss / nb_eval_steps
        preds = preds[0]
        if output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif output_mode == "regression":
            preds = np.squeeze(preds)
        result = compute_metrics(task_name, preds, all_label_ids.numpy())
        loss = tr_loss / nb_tr_steps if args.do_train else None

        result['eval_loss'] = eval_loss
        result['global_step'] = global_step
        result['loss'] = loss

        with open(os.path.join(args.data_dir, "val.txt"),
                  'r',
                  encoding="utf-8") as f:
            lines = f.readlines()

        label_ids = all_label_ids.numpy()
        for i in range(len(eval_examples)):
            if preds[i] != label_ids[i]:
                print('real: ', label_ids[i], 'predict: ', preds[i],
                      lines[i].encode('unicode_escape'))

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

    if args.do_predict and (args.local_rank == -1
                            or torch.distributed.get_rank() == 0):
        eval_examples = processor.get_test_examples(args.data_dir)
        eval_features = convert_examples_to_features(eval_examples, label_list,
                                                     args.max_seq_length,
                                                     tokenizer, output_mode)
        logger.info("***** Running Prediction *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)

        if output_mode == "classification":
            all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                         dtype=torch.long)
        elif output_mode == "regression":
            all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                         dtype=torch.float)

        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)
        # Load a trained model and vocabulary that you have fine-tuned
        # model = BertForSequenceClassification.from_pretrained(args.output_dir, num_labels=num_labels)
        # tokenizer = BertTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)

        model.eval()
        eval_loss = 0
        nb_eval_steps = 0
        preds = []

        for input_ids, input_mask, segment_ids, label_ids in tqdm(
                eval_dataloader, desc="Testing"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                logits = model(input_ids, segment_ids, input_mask, labels=None)

            # create eval loss and other metric required by the task
            if output_mode == "classification":
                loss_fct = CrossEntropyLoss()
                tmp_eval_loss = loss_fct(logits.view(-1, num_labels),
                                         label_ids.view(-1))
            elif output_mode == "regression":
                loss_fct = MSELoss()
                tmp_eval_loss = loss_fct(logits.view(-1), label_ids.view(-1))

            eval_loss += tmp_eval_loss.mean().item()
            nb_eval_steps += 1
            if len(preds) == 0:
                preds.append(logits.detach().cpu().numpy())
            else:
                preds[0] = np.append(preds[0],
                                     logits.detach().cpu().numpy(),
                                     axis=0)

        eval_loss = eval_loss / nb_eval_steps
        preds = preds[0]
        if output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif output_mode == "regression":
            preds = np.squeeze(preds)
        result = compute_metrics(task_name, preds, all_label_ids.numpy())
        loss = tr_loss / nb_tr_steps if args.do_train else None

        result['eval_loss'] = eval_loss
        result['global_step'] = global_step
        result['loss'] = loss

        output_eval_file = os.path.join(args.output_dir, "test_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Test results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

        print("Accuracy...")
        print(metrics.accuracy_score(all_label_ids.numpy(), preds))
        print("Precision, Recall and F1-Score...")
        print(
            metrics.classification_report(all_label_ids.numpy(),
                                          preds,
                                          digits=4))
示例#28
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .csv files (or other data files) for the task."
    )
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese."
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--max_seq_length",
        default=512,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")

    parser.add_argument("--load_model", type=str, help="load model path.")

    parser.add_argument("--do_train",
                        default=False,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        default=False,
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_lower_case",
        default=False,
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=4,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        default=False,
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")

    args = parser.parse_args()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = int(args.train_batch_size /
                                args.gradient_accumulation_steps)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")
    if os.path.exists(args.output_dir) == False:
        os.makedirs(args.output_dir, exist_ok=True)


#     if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
#         raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_steps = None
    if args.do_train:
        train_path = os.path.join(args.data_dir, 'train_all.csv')
        train_examples = read_race_examples(train_path)

        num_train_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps * args.num_train_epochs)

    # Prepare model
    if args.load_model:
        logger.info("***** Loading Model *****")
        model_state_dict = torch.load(args.load_model)
        model = BertForMultipleChoice.from_pretrained(
            args.bert_model, state_dict=model_state_dict, num_choices=4)
        logger.info("loaded model %s", args.load_model)
    else:
        model = BertForMultipleChoice.from_pretrained(
            args.bert_model,
            cache_dir=PYTORCH_PRETRAINED_BERT_CACHE /
            'distributed_{}'.format(args.local_rank),
            num_choices=4)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())

    # hack to remove pooler, which is not used
    # thus it produce None grad that break apex
    param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]

    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    t_total = num_train_steps
    if args.local_rank != -1:
        t_total = t_total // torch.distributed.get_world_size()
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)
    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=t_total)

    global_step = 0
    if args.do_train:
        train_features = convert_examples_to_features(train_examples,
                                                      tokenizer,
                                                      args.max_seq_length,
                                                      True)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)
        all_input_ids = torch.tensor(select_field(train_features, 'input_ids'),
                                     dtype=torch.long)
        all_input_mask = torch.tensor(select_field(train_features,
                                                   'input_mask'),
                                      dtype=torch.long)
        all_segment_ids = torch.tensor(select_field(train_features,
                                                    'segment_ids'),
                                       dtype=torch.long)
        all_label = torch.tensor([f.label for f in train_features],
                                 dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        for ep in range(int(args.num_train_epochs)):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            logger.info("Training Epoch: {}/{}".format(
                ep + 1, int(args.num_train_epochs)))
            for step, batch in enumerate(train_dataloader):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                loss = model(input_ids, segment_ids, input_mask, label_ids)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.fp16 and args.loss_scale != 1.0:
                    # rescale loss for fp16 training
                    # see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
                    loss = loss * args.loss_scale
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    # modify learning rate with special warm up BERT uses
                    lr_this_step = args.learning_rate * warmup_linear(
                        global_step / t_total, args.warmup_proportion)
                    for param_group in optimizer.param_groups:
                        param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

                if global_step % 100 == 0:
                    logger.info("Training loss: {}, global step: {}".format(
                        tr_loss / nb_tr_steps, global_step))

            dev_set = os.path.join(args.data_dir, 'dev_all.csv')
            eval_examples = read_race_examples(dev_set)
            eval_features = convert_examples_to_features(
                eval_examples, tokenizer, args.max_seq_length, True)
            logger.info("***** Running evaluation: Dev *****")
            logger.info("  Num examples = %d", len(eval_examples))
            logger.info("  Batch size = %d", args.eval_batch_size)
            all_input_ids = torch.tensor(select_field(eval_features,
                                                      'input_ids'),
                                         dtype=torch.long)
            all_input_mask = torch.tensor(select_field(eval_features,
                                                       'input_mask'),
                                          dtype=torch.long)
            all_segment_ids = torch.tensor(select_field(
                eval_features, 'segment_ids'),
                                           dtype=torch.long)
            all_label = torch.tensor([f.label for f in eval_features],
                                     dtype=torch.long)
            eval_data = TensorDataset(all_input_ids, all_input_mask,
                                      all_segment_ids, all_label)
            # Run prediction for full data
            eval_sampler = SequentialSampler(eval_data)
            eval_dataloader = DataLoader(eval_data,
                                         sampler=eval_sampler,
                                         batch_size=args.eval_batch_size)

            model.eval()
            eval_loss, eval_accuracy = 0, 0
            nb_eval_steps, nb_eval_examples = 0, 0
            for step, batch in enumerate(eval_dataloader):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch

                with torch.no_grad():
                    tmp_eval_loss = model(input_ids, segment_ids, input_mask,
                                          label_ids)
                    logits = model(input_ids, segment_ids, input_mask)

                logits = logits.detach().cpu().numpy()
                label_ids = label_ids.to('cpu').numpy()
                tmp_eval_accuracy = accuracy(logits, label_ids)

                eval_loss += tmp_eval_loss.mean().item()
                eval_accuracy += tmp_eval_accuracy

                nb_eval_examples += input_ids.size(0)
                nb_eval_steps += 1

            eval_loss = eval_loss / nb_eval_steps
            eval_accuracy = eval_accuracy / nb_eval_examples

            result = {
                'dev_eval_loss': eval_loss,
                'dev_eval_accuracy': eval_accuracy,
                'global_step': global_step,
                'loss': tr_loss / nb_tr_steps
            }

            output_eval_file = os.path.join(args.output_dir,
                                            "eval_results.txt")
            with open(output_eval_file, "a+") as writer:
                logger.info("***** Dev results *****")
                for key in sorted(result.keys()):
                    logger.info("  %s = %s", key, str(result[key]))
                    writer.write("%s = %s\n" % (key, str(result[key])))

            # Save a trained model
            model_to_save = model.module if hasattr(
                model, 'module') else model  # Only save the model it-self
            output_model_file = os.path.join(
                args.output_dir, "merge_pytorch_model_" + str(ep) + ".bin")
            torch.save(model_to_save.state_dict(), output_model_file)

    ## Load a trained model that you have fine-tuned
    ## use this part if you want to load the trained model
    # model_state_dict = torch.load(output_model_file)
    # model = BertForMultipleChoice.from_pretrained(args.bert_model,
    #     state_dict=model_state_dict,
    #     num_choices=4)
    # model.to(device)

    if args.do_eval and (args.local_rank == -1
                         or torch.distributed.get_rank() == 0):
        test_dir = os.path.join(args.data_dir, 'test')
        test_high = [test_dir + '/high']
        test_middle = [test_dir + '/middle']

        ## test high
        eval_examples = read_race_examples(test_high)
        eval_features = convert_examples_to_features(eval_examples, tokenizer,
                                                     args.max_seq_length, True)
        logger.info("***** Running evaluation: test high *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor(select_field(eval_features, 'input_ids'),
                                     dtype=torch.long)
        all_input_mask = torch.tensor(select_field(eval_features,
                                                   'input_mask'),
                                      dtype=torch.long)
        all_segment_ids = torch.tensor(select_field(eval_features,
                                                    'segment_ids'),
                                       dtype=torch.long)
        all_label = torch.tensor([f.label for f in eval_features],
                                 dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        model.eval()
        high_eval_loss, high_eval_accuracy = 0, 0
        high_nb_eval_steps, high_nb_eval_examples = 0, 0
        for step, batch in enumerate(eval_dataloader):
            batch = tuple(t.to(device) for t in batch)
            input_ids, input_mask, segment_ids, label_ids = batch

            with torch.no_grad():
                tmp_eval_loss = model(input_ids, segment_ids, input_mask,
                                      label_ids)
                logits = model(input_ids, segment_ids, input_mask)

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            tmp_eval_accuracy = accuracy(logits, label_ids)

            high_eval_loss += tmp_eval_loss.mean().item()
            high_eval_accuracy += tmp_eval_accuracy

            high_nb_eval_examples += input_ids.size(0)
            high_nb_eval_steps += 1

        eval_loss = high_eval_loss / high_nb_eval_steps
        eval_accuracy = high_eval_accuracy / high_nb_eval_examples

        result = {
            'high_eval_loss': eval_loss,
            'high_eval_accuracy': eval_accuracy
        }

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "a+") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

        ## test middle
        eval_examples = read_race_examples(test_middle)
        eval_features = convert_examples_to_features(eval_examples, tokenizer,
                                                     args.max_seq_length, True)
        logger.info("***** Running evaluation: test middle *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor(select_field(eval_features, 'input_ids'),
                                     dtype=torch.long)
        all_input_mask = torch.tensor(select_field(eval_features,
                                                   'input_mask'),
                                      dtype=torch.long)
        all_segment_ids = torch.tensor(select_field(eval_features,
                                                    'segment_ids'),
                                       dtype=torch.long)
        all_label = torch.tensor([f.label for f in eval_features],
                                 dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        model.eval()
        middle_eval_loss, middle_eval_accuracy = 0, 0
        middle_nb_eval_steps, middle_nb_eval_examples = 0, 0
        for step, batch in enumerate(eval_dataloader):
            batch = tuple(t.to(device) for t in batch)
            input_ids, input_mask, segment_ids, label_ids = batch

            with torch.no_grad():
                tmp_eval_loss = model(input_ids, segment_ids, input_mask,
                                      label_ids)
                logits = model(input_ids, segment_ids, input_mask)

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            tmp_eval_accuracy = accuracy(logits, label_ids)

            middle_eval_loss += tmp_eval_loss.mean().item()
            middle_eval_accuracy += tmp_eval_accuracy

            middle_nb_eval_examples += input_ids.size(0)
            middle_nb_eval_steps += 1

        eval_loss = middle_eval_loss / middle_nb_eval_steps
        eval_accuracy = middle_eval_accuracy / middle_nb_eval_examples

        result = {
            'middle_eval_loss': eval_loss,
            'middle_eval_accuracy': eval_accuracy
        }

        with open(output_eval_file, "a+") as writer:
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

        ## all test
        eval_loss = (middle_eval_loss + high_eval_loss) / (
            middle_nb_eval_steps + high_nb_eval_steps)
        eval_accuracy = (middle_eval_accuracy + high_eval_accuracy) / (
            middle_nb_eval_examples + high_nb_eval_examples)

        result = {
            'overall_eval_loss': eval_loss,
            'overall_eval_accuracy': eval_accuracy
        }

        with open(output_eval_file, "a+") as writer:
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))
示例#29
0
def train(args, train_dataset, model, tokenizer, teacher=None):
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(
        train_dataset) if args.local_rank == -1 else DistributedSampler(
            train_dataset)
    train_dataloader = DataLoader(train_dataset,
                                  sampler=train_sampler,
                                  batch_size=args.train_batch_size)

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (
            len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(
            train_dataloader
        ) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
    no_decay = ["bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
        {
            "params": [
                p for n, p in model.named_parameters()
                if not any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            args.weight_decay,
        },
        {
            "params": [
                p for n, p in model.named_parameters()
                if any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            0.0
        },
    ]
    optimizer = AdamW(optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(
        optimizer,
        num_warmup_steps=args.warmup_steps,
        num_training_steps=t_total)

    # Check if saved optimizer or scheduler states exist
    if os.path.isfile(os.path.join(
            args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
                os.path.join(args.model_name_or_path, "scheduler.pt")):
        # Load in optimizer and scheduler states
        optimizer.load_state_dict(
            torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(
            torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))

    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )

        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model,
            device_ids=[args.local_rank],
            output_device=args.local_rank,
            find_unused_parameters=True)

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d",
                args.per_gpu_train_batch_size)
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size * args.gradient_accumulation_steps *
        (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
    logger.info("  Gradient Accumulation steps = %d",
                args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 1
    epochs_trained = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if os.path.exists(args.model_name_or_path):
        try:
            # set global_step to gobal_step of last saved checkpoint from model path
            checkpoint_suffix = args.model_name_or_path.split("-")[-1].split(
                "/")[0]
            global_step = int(checkpoint_suffix)
            epochs_trained = global_step // (len(train_dataloader) //
                                             args.gradient_accumulation_steps)
            steps_trained_in_current_epoch = global_step % (
                len(train_dataloader) // args.gradient_accumulation_steps)

            logger.info(
                "  Continuing training from checkpoint, will skip to saved global_step"
            )
            logger.info("  Continuing training from epoch %d", epochs_trained)
            logger.info("  Continuing training from global step %d",
                        global_step)
            logger.info("  Will skip the first %d steps in the first epoch",
                        steps_trained_in_current_epoch)
        except ValueError:
            logger.info("  Starting fine-tuning.")

    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
    train_iterator = trange(epochs_trained,
                            int(args.num_train_epochs),
                            desc="Epoch",
                            disable=args.local_rank not in [-1, 0])
    # Added here for reproductibility
    set_seed(args)

    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader,
                              desc="Iteration",
                              disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):

            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

            model.train()
            if teacher is not None:
                teacher.eval()
            batch = tuple(t.to(args.device) for t in batch)

            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "start_positions": batch[3],
                "end_positions": batch[4],
            }
            if args.model_type != "distilbert":
                inputs[
                    "token_type_ids"] = None if args.model_type == "xlm" else batch[
                        2]
            if args.model_type in ["xlnet", "xlm"]:
                inputs.update({"cls_index": batch[5], "p_mask": batch[6]})
                if args.version_2_with_negative:
                    inputs.update({"is_impossible": batch[7]})
            outputs = model(**inputs)
            loss, start_logits_stu, end_logits_stu = outputs

            # Distillation loss
            if teacher is not None:
                if "token_type_ids" not in inputs:
                    inputs[
                        "token_type_ids"] = None if args.teacher_type == "xlm" else batch[
                            2]
                with torch.no_grad():
                    start_logits_tea, end_logits_tea = teacher(
                        input_ids=inputs["input_ids"],
                        token_type_ids=inputs["token_type_ids"],
                        attention_mask=inputs["attention_mask"],
                    )
                assert start_logits_tea.size() == start_logits_stu.size()
                assert end_logits_tea.size() == end_logits_stu.size()

                loss_fct = nn.KLDivLoss(reduction="batchmean")
                loss_start = (loss_fct(
                    F.log_softmax(start_logits_stu / args.temperature, dim=-1),
                    F.softmax(start_logits_tea / args.temperature, dim=-1),
                ) * (args.temperature**2))
                loss_end = (loss_fct(
                    F.log_softmax(end_logits_stu / args.temperature, dim=-1),
                    F.softmax(end_logits_tea / args.temperature, dim=-1),
                ) * (args.temperature**2))
                loss_ce = (loss_start + loss_end) / 2.0

                loss = args.alpha_ce * loss_ce + args.alpha_squad * loss

            if args.n_gpu > 1:
                loss = loss.mean(
                )  # mean() to average on multi-gpu parallel (not distributed) training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(
                        amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(),
                                                   args.max_grad_norm)

                optimizer.step()
                scheduler.step()  # Update learning rate schedule
                model.zero_grad()
                global_step += 1

                # Log metrics
                if args.local_rank in [
                        -1, 0
                ] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Only evaluate when single GPU otherwise metrics may not average well
                    if args.local_rank == -1 and args.evaluate_during_training:
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
                            tb_writer.add_scalar("eval_{}".format(key), value,
                                                 global_step)
                    tb_writer.add_scalar("lr",
                                         scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar("loss", (tr_loss - logging_loss) /
                                         args.logging_steps, global_step)
                    logging_loss = tr_loss

                if args.local_rank in [
                        -1, 0
                ] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
                    output_dir = os.path.join(
                        args.output_dir, "checkpoint-{}".format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    tokenizer.save_pretrained(output_dir)

                    torch.save(args,
                               os.path.join(output_dir, "training_args.bin"))
                    logger.info("Saving model checkpoint to %s", output_dir)

                    torch.save(optimizer.state_dict(),
                               os.path.join(output_dir, "optimizer.pt"))
                    torch.save(scheduler.state_dict(),
                               os.path.join(output_dir, "scheduler.pt"))
                    logger.info("Saving optimizer and scheduler states to %s",
                                output_dir)

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

    return global_step, tr_loss / global_step
示例#30
0
def train(args, model, tokenizer, train_dataset, eval_dataset):
    eval_acc = evaluate(args, model, tokenizer, eval_dataset)
    logger.info(f"Initial Eval Accuracy: {eval_acc}")
    if args.num_train_epochs == 0:
        wandb.log({"eval_acc": eval_acc})
        return
    train_acc = evaluate(args, model, tokenizer, train_dataset, is_train=True)
    logger.info(f"Initial Train Accuracy: {train_acc}")
    wandb.log({"eval_acc": eval_acc, "train_acc": train_acc})

    train_sampler = RandomSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset,
                                  sampler=train_sampler,
                                  batch_size=args.per_device_train_batch_size)

    logger.info(f"***** Running training  *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Batch size = {args.per_device_train_batch_size}")
    train_dataloader = tqdm(train_dataloader, desc="Training", leave=False)

    optimizer = transformers.AdamW(model.parameters(),
                                   lr=args.learning_rate,
                                   weight_decay=args.weight_decay)
    scheduler = transformers.get_linear_schedule_with_warmup(
        optimizer,
        len(train_dataloader) * args.num_train_epochs //
        args.gradient_accumulation_steps * args.warmup_ratio,
        len(train_dataloader) * args.num_train_epochs //
        args.gradient_accumulation_steps)

    MASK_ID = tokenizer.encode(tokenizer.mask_token, add_special_tokens=False)
    assert len(MASK_ID) == 1
    MASK_ID = MASK_ID[0]
    accumulated_loss = torch.tensor(0.0).to(args.device)

    for epoch in tqdm(range(args.num_train_epochs)):
        for step, batch in enumerate(train_dataloader):
            if args.no_dropout:
                model.eval()
            else:
                model.train()

            # batch["choice_list"] is [num_choices, batch_size]
            curr_answers = []
            for i in range(len(batch["choice_list"][0])):
                curr_answers.append(
                    batch["choice_list"][batch["answer_id"][i]][i])

            choice_lists = batch.pop("choice_list")
            batch_len = len(batch["answer_id"])
            del batch["answer_id"]
            for key in batch:
                batch[key] = torch.stack(batch[key], dim=-1).to(args.device)

            if "t5" not in args.model_name_or_path.lower():
                MASK_INDEX = batch["input_ids"][0].tolist().index(MASK_ID)
                labels = torch.full((batch["input_ids"].size()[:2]),
                                    -100,
                                    device=args.device)
                # labels = batch["input_ids"].detach().clone()
                for i, curr_answer in enumerate(curr_answers):
                    MASK_INDEX = batch["input_ids"][i].tolist().index(MASK_ID)
                    assert len(
                        tokenizer.encode(" " + curr_answer,
                                         add_special_tokens=False)) == 1
                    labels[i][MASK_INDEX] = tokenizer.encode(
                        " " + curr_answer, add_special_tokens=False)[0]
            else:
                labels = []
                for i, curr_answer in enumerate(curr_answers):
                    labels += tokenizer.encode(
                        f"<extra_id_0> {curr_answer} <extra_id_1>",
                        return_tensors="pt")

                labels = torch.stack(labels, dim=0).to(args.device)

            outputs = model(**batch, labels=labels)

            loss = outputs.loss
            accumulated_loss += float(loss)
            if (step + 1) % args.gradient_accumulation_steps == 0:
                wandb.log({"train_loss": accumulated_loss.item()})
                wandb.log({"lr": scheduler.get_last_lr()[0]})
                loss.backward()
                if args.clip > 0:
                    torch.nn.utils.clip_grad_norm_(model.parameters(),
                                                   args.clip)

                optimizer.step()
                scheduler.step()
                model.zero_grad()
                accumulated_loss = torch.tensor(0.0).to(args.device)

        eval_acc = evaluate(args, model, tokenizer, eval_dataset)
        logger.info(f"{epoch}th Eval Accuracy: {eval_acc}")
        train_acc = evaluate(args,
                             model,
                             tokenizer,
                             train_dataset,
                             is_train=True)
        logger.info(f"{epoch}th Train Accuracy: {train_acc}")
        wandb.log({"eval_acc": eval_acc, "train_acc": train_acc})

    return True