def get_model(large_model):
    n_out = 2
    if large_model:
        print("Using large model")
        model = AnisotropicUNet(
            scale_factors=[
                [1, 2, 2],
                [1, 2, 2],
                [2, 2, 2],
                [2, 2, 2],
                [2, 2, 2]
            ],
            in_channels=1,
            out_channels=n_out,
            initial_features=128,
            gain=2,
            final_activation="Sigmoid"
        )
    else:
        print("Using vanilla model")
        model = AnisotropicUNet(
            scale_factors=[
                [1, 2, 2],
                [1, 2, 2],
                [2, 2, 2],
                [2, 2, 2]
            ],
            in_channels=1,
            out_channels=n_out,
            initial_features=64,
            gain=2,
            final_activation="Sigmoid"
        )
    return model
示例#2
0
def train_shallow2deep(args):
    name = f"cremi3d-v{args.version}"

    # check if we need to train the rfs for preparation
    rf_folder = os.path.join("checkpoints", name, "rfs")
    have_rfs = len(glob(os.path.join(rf_folder, "*.pkl"))) == args.n_rfs
    if not have_rfs:
        prepare_shallow2deep_cremi(args, rf_folder)
    assert os.path.exists(rf_folder)

    model = AnisotropicUNet(in_channels=1,
                            out_channels=1,
                            final_activation="Sigmoid",
                            scale_factors=[[1, 2, 2], [1, 2, 2], [2, 2, 2],
                                           [2, 2, 2]])

    train_loader = get_cremi_loader(args, "train", rf_folder)
    val_loader = get_cremi_loader(args, "val", rf_folder)

    dice_loss = torch_em.loss.DiceLoss()
    trainer = torch_em.default_segmentation_trainer(name,
                                                    model,
                                                    train_loader,
                                                    val_loader,
                                                    loss=dice_loss,
                                                    metric=dice_loss,
                                                    learning_rate=1.0e-4,
                                                    device=args.device,
                                                    log_image_interval=50)
    trainer.fit(args.n_iterations)
def get_model():
    model = AnisotropicUNet(scale_factors=4 * [[2, 2, 2]],
                            in_channels=1,
                            out_channels=2,
                            initial_features=32,
                            gain=2,
                            final_activation="Sigmoid")
    return model
示例#4
0
 def test_anisotropic_unet(self):
     from torch_em.model import AnisotropicUNet
     scale_factors = [[1, 2, 2], [1, 2, 2], [2, 2, 2]]
     for anisotropic_kernel in (False, True):
         net = AnisotropicUNet(1,
                               1,
                               scale_factors,
                               initial_features=4,
                               anisotropic_kernel=anisotropic_kernel)
         self._test_net(net, (1, 1, 8, 32, 32))
def get_model(use_diagonal_offsets):
    n_out = len(get_offsets(use_diagonal_offsets))

    def my_sampler(scale_factor, inc, outc):
        return Upsampler3d(scale_factor, inc, outc, mode='bilinear')

    model = AnisotropicUNet(
        in_channels=1,
        out_channels=n_out,
        final_activation='Sigmoid',
        pooler_impl=nn.AvgPool2d,
        sampler_impl=my_sampler
    )
    return model
示例#6
0
def get_model():
    n_out = len(OFFSETS)
    model = AnisotropicUNet(
        scale_factors=[
            [1, 2, 2],
            [1, 2, 2],
            [2, 2, 2],
            [2, 2, 2],
            [2, 2, 2]
        ],
        in_channels=1,
        out_channels=n_out,
        initial_features=32,
        gain=2,
        final_activation="Sigmoid"
    )
    return model
示例#7
0
def get_model():
    # we have 1 channel per affinty offsets and another channel
    # for foreground background segmentation
    n_out = len(OFFSETS) + 1

    # TODO adapt scale factors for data at native resolution
    scale_factors = 4 * [[2, 2, 2]]

    model = AnisotropicUNet(
        in_channels=1,
        out_channels=n_out,
        scale_factors=scale_factors,
        initial_features=64,
        gain=2,
        final_activation='Sigmoid',
        anisotropic_kernel=
        False  # set anisotropic kernels if scale factors are anisotropic
    )
    return model