示例#1
0
文件: gat.py 项目: xduan7/MoReL
    def __init__(self,
                 node_attr_dim: int,
                 edge_attr_dim: int,
                 state_dim: int = 8,
                 num_heads: int = 8,
                 num_conv: int = 2,
                 out_dim: int = 1,
                 dropout: float = 0.2,
                 attention_pooling: bool = True):

        super(EdgeGATEncoder, self).__init__()

        self.__edge_gat = EdgeGAT(node_attr_dim=node_attr_dim,
                                  edge_attr_dim=edge_attr_dim,
                                  state_dim=state_dim,
                                  num_heads=num_heads,
                                  num_conv=num_conv,
                                  out_dim=state_dim,
                                  dropout=dropout)

        # Pooling layer is supposed to perform the following shape-shifting:
        #   From [num_nodes, node_attr_dim * edge_attr_dim]
        #   To [num_graphs, 2 * state_dim * edge_attr_dim]
        if attention_pooling:
            self.__pooling = pyg_nn.GlobalAttention(
                nn.Linear(state_dim * edge_attr_dim, 1),
                nn.Linear(state_dim * edge_attr_dim,
                          2 * state_dim * edge_attr_dim))
        else:
            self.__pooling = pyg_nn.Set2Set(state_dim * edge_attr_dim,
                                            processing_steps=3)

        self.__out_linear = nn.Sequential(
            nn.Linear(2 * state_dim * edge_attr_dim, state_dim), nn.ReLU(),
            nn.Linear(state_dim, out_dim))
示例#2
0
    def __init__(self,
                 node_attr_dim: int,
                 edge_attr_dim: int,
                 state_dim: int = 64,
                 num_conv: int = 3,
                 out_dim: int = 1,
                 attention_pooling: bool = False):

        super(MPNN, self).__init__()

        self.__in_linear = nn.Sequential(nn.Linear(node_attr_dim, state_dim),
                                         nn.ReLU())

        self.__num_conv = num_conv
        self.__nn_conv_linear = nn.Sequential(
            nn.Linear(edge_attr_dim, state_dim), nn.ReLU(),
            nn.Linear(state_dim, state_dim * state_dim))
        self.__nn_conv = pyg_nn.NNConv(state_dim,
                                       state_dim,
                                       self.__nn_conv_linear,
                                       aggr='mean',
                                       root_weight=False)
        self.__gru = nn.GRU(state_dim, state_dim)

        # self.__set2set = pyg_nn.Set2Set(state_dim, processing_steps=3)
        if attention_pooling:
            self.__pooling = pyg_nn.GlobalAttention(
                nn.Linear(state_dim, 1), nn.Linear(state_dim, 2 * state_dim))
        else:
            # Setting the num_layers > 1 will take significantly more time
            self.__pooling = pyg_nn.Set2Set(state_dim, processing_steps=3)

        self.__out_linear = nn.Sequential(
            nn.Linear(2 * state_dim, 2 * state_dim), nn.ReLU(),
            nn.Linear(2 * state_dim, out_dim))
示例#3
0
 def __init__(self, action_dim, hidden_dim, node_dim):
     super().__init__()
     self.gat = GAT(hidden_dim=hidden_dim, node_dim=node_dim)
     self.set2set = gnn.Set2Set(hidden_dim, processing_steps=6)
     self.mlp = nn.Sequential(nn.Linear(2 * hidden_dim, hidden_dim),
                              nn.ReLU(), nn.Linear(hidden_dim, hidden_dim),
                              nn.ReLU(), nn.Linear(hidden_dim, 1))
示例#4
0
    def __init__(self, action_dim, hidden_dim, edge_dim, node_dim):
        super().__init__()
        self.mpnn = MPNN(hidden_dim=hidden_dim, edge_dim=edge_dim, node_dim=node_dim)
        self.set2set = gnn.Set2Set(hidden_dim, processing_steps=6)

        self.fc = nn.Linear(2*hidden_dim, hidden_dim)
        self.mlp = nn.Sequential(nn.Linear(5*hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, action_dim))

        self.hidden_dim = hidden_dim
示例#5
0
文件: models.py 项目: ryosa0915/molan
    def __init__(self, hparams, node_dim, edge_dim):
        super(GCN, self).__init__()

        self.node_dim = node_dim
        self.edge_dim = edge_dim
        self.hparams = hparams
        self.output_dim = 1

        # Linear atom embedding
        self.linatoms = torch.nn.Linear(self.node_dim,
                                        hparams['conv_base_size'])

        # Graph Convolution
        emb_dim = hparams['emb_dim']
        conv_dims = net_pattern(hparams['conv_n_layers'],
                                hparams['conv_base_size'],
                                hparams['conv_ratio']) + [emb_dim]
        conv_layers = []
        for index in range(hparams['conv_n_layers']):
            conv_layers.append(
                gnn.GCNConv(conv_dims[index],
                            conv_dims[index + 1],
                            cached=False))

        self.graph_conv = nn.ModuleList(conv_layers)
        if self.hparams['conv_batchnorm']:
            self.bn = nn.ModuleList(
                [nn.BatchNorm1d(dim) for dim in conv_dims[1:]])
        # Graph embedding
        if hparams['emb_set2set']:
            self.graph_emb = gnn.Set2Set(emb_dim, processing_steps=3)
            emb_dim = emb_dim * 2
        else:
            self.graph_emb = nn.Sequential(nn.Linear(emb_dim, emb_dim),
                                           str2act(hparams['emb_act']))

        # Build mlp
        self.using_mlp = hparams['mlp_layers'] > 0
        if self.using_mlp:
            self.mlp, last_dim = make_mlp(emb_dim, hparams['mlp_layers'],
                                          hparams['mlp_dim_ratio'],
                                          hparams['mlp_act'],
                                          hparams['mlp_batchnorm'],
                                          hparams['mlp_dropout'])
        else:
            last_dim = emb_dim

        # Prediction
        self.pred = nn.Linear(last_dim, self.output_dim)

        # placeholder for the gradients
        self.gradients = None
示例#6
0
def run_check1():
    batch_size = 10
    num_node = 30
    node_dim = 3
    edge_dim = 2

    num_edge = 24
    edge_index = np.random.choice(num_node, (num_edge, 2))
    node = np.random.uniform(-1, 1, (num_node, node_dim))
    edge = np.random.uniform(-1, 1, (num_edge, edge_dim))
    node_batch_index = np.random.choice(batch_size, num_node)
    node_batch_index = np.sort(node_batch_index)

    #---
    edge_index = torch.from_numpy(edge_index).long()
    node_batch_index = torch.from_numpy(node_batch_index).long()
    node = torch.from_numpy(node).float()
    edge = torch.from_numpy(edge).float()

    set2set_ref = gnn.Set2Set(node_dim, processing_steps=1)
    set2set = Set2Set(node_dim, processing_step=1)

    set2set.lstm.bias_ih_l0.data = set2set_ref.lstm.bias_ih_l0
    set2set.lstm.bias_hh_l0.data = set2set_ref.lstm.bias_hh_l0
    set2set.lstm.weight_ih_l0.data = set2set_ref.lstm.weight_ih_l0
    set2set.lstm.weight_hh_l0.data = set2set_ref.lstm.weight_hh_l0

    #---
    print('------------------------------')
    print('')
    print(set2set_ref)
    print('')

    print('node (x)')
    print(node.shape)
    print('')

    y = set2set_ref(node, node_batch_index)
    y1 = set2set(node, node_batch_index)

    print('y')
    print(y.shape)
    print(y)
    print('')

    print('y1')
    print(y1.shape)
    print(y1)
    print('')
示例#7
0
    def __init__(self,
                 node_feature_size,
                 edge_feature_size,
                 node_hidden_size,
                 edge_hidden_size,
                 dropout_ratio=0.5,
                 steps=6):
        super(MoleculeMPNN, self).__init__()
        self.node_feature_size = node_feature_size
        self.edge_feature_size = edge_feature_size
        self.node_hidden_size = node_hidden_size
        self.edge_feature_size = edge_hidden_size
        self.dropout_ratio = dropout_ratio

        self.embedder = nn.Sequential(
            LinearBlock(node_feature_size, 64, self.dropout_ratio, True,
                        nn.ReLU()),
            LinearBlock(64, self.node_hidden_size, self.dropout_ratio, False),
        )

        self.steps = steps

        self.edge_net = nn.Sequential(
            LinearBlock(edge_feature_size, 32, self.dropout_ratio, True,
                        nn.ReLU()),
            LinearBlock(32, 64, self.dropout_ratio, True, nn.ReLU()),
            LinearBlock(64, self.edge_feature_size, self.dropout_ratio, True,
                        nn.ReLU()),
            LinearBlock(self.edge_feature_size,
                        self.node_hidden_size * self.node_hidden_size,
                        self.dropout_ratio, True))

        self.mpnn = gnn.NNConv(self.node_hidden_size,
                               self.node_hidden_size,
                               self.edge_net,
                               aggr="mean",
                               root_weight=True)

        self.gru = nn.GRUCell(self.node_hidden_size, self.node_hidden_size)

        self.set2set = gnn.Set2Set(self.node_hidden_size, self.steps)

        self.fc = nn.Sequential(
            LinearBlock(self.node_hidden_size * 4 + 8, 1024,
                        self.dropout_ratio, True, nn.ReLU()),
            LinearBlock(1024, 8))
示例#8
0
文件: models.py 项目: ryosa0915/molan
    def __init__(self, hparams, node_dim=None, edge_dim=None):
        super(MPNN, self).__init__()

        self.node_dim = node_dim
        self.edge_dim = edge_dim
        self.hparams = hparams
        self.output_dim = 1

        # Linear atom embedding
        atom_dim = hparams['atom_dim']
        self.linatoms = torch.nn.Linear(self.node_dim, atom_dim)

        # MPNN part
        conv_dim = atom_dim * 2
        nnet = nn.Sequential(*[
            nn.Linear(self.edge_dim, conv_dim),
            str2act(hparams['conv_act']),
            nn.Linear(conv_dim, atom_dim * atom_dim)
        ])
        self.conv = gnn.NNConv(atom_dim,
                               atom_dim,
                               nnet,
                               aggr=hparams['conv_aggr'],
                               root_weight=False)
        self.gru = nn.GRU(atom_dim, atom_dim)

        # Graph embedding
        self.set2set = gnn.Set2Set(atom_dim,
                                   processing_steps=hparams['emb_steps'])

        # Build mlp
        self.using_mlp = hparams['mlp_layers'] > 0
        if self.using_mlp:
            self.mlp, last_dim = make_mlp(atom_dim * 2, hparams['mlp_layers'],
                                          hparams['mlp_dim_ratio'],
                                          hparams['mlp_act'],
                                          hparams['mlp_batchnorm'],
                                          hparams['mlp_dropout'])
        else:
            last_dim = atom_dim * 2

        # Prediction
        self.pred = nn.Linear(last_dim, self.output_dim)
示例#9
0
    def __init__(self,
                 r_dim,
                 num_encoder_layers=6,
                 num_decoder_layers=6,
                 readout_steps=5,
                 dropout=0.):
        # TODO batch
        # TODO edge attrs
        self.dropout = dropout
        self.num_encoder_layers = num_encoder_layers
        self.num_decoder_layers = num_decoder_layers

        encoder = GraphEncoder(r_dim,
                               num_layers=self.num_encoder_layers,
                               dropout=self.dropout)
        decoder = GraphDecoder(r_dim,
                               num_layers=self.num_decoder_layers,
                               dropout=self.dropout)
        super(VGAE, self).__init__(encoder, decoder, r_dim)

        self.set2set = gnn.Set2Set(r_dim, processing_steps=readout_steps)
示例#10
0
    def __init__(self, node_dim=13, edge_dim=5, num_target=8):
        super(Net, self).__init__()

        self.num_message_passing = 6
        node_hidden_dim = 128
        edge_hidden_dim = 128

        self.preprocess = nn.Sequential(
            LinearBn(node_dim, 64),
            nn.ReLU(),
            LinearBn(64, node_hidden_dim),
        )
        edge_net = nn.Sequential(
            LinearBn(edge_dim, 32),
            nn.ReLU(),  #Swish(),#nn.ReLU(), LeakyReLU
            LinearBn(32, 64),
            nn.ReLU(),  #Swish(),#nn.ReLU(),
            LinearBn(64, edge_hidden_dim),
            nn.ReLU(),  #Swish(),#nn.ReLU(),
            LinearBn(edge_hidden_dim, node_hidden_dim * node_hidden_dim
                     )  # edge_hidden_dim,  node_hidden_dim *node_hidden_dim
        )

        self.conv = gnn.NNConv(
            node_hidden_dim,
            node_hidden_dim,
            edge_net,
            aggr='mean',
            root_weight=True)  #node_hidden_dim, node_hidden_dim
        self.gru = nn.GRU(node_hidden_dim, node_hidden_dim)

        self.set2set = gnn.Set2Set(node_hidden_dim,
                                   processing_steps=6)  # node_hidden_dim

        #predict coupling constant
        self.predict = nn.Sequential(
            LinearBn(4 * node_hidden_dim, 512),  #node_hidden_dim
            nn.ReLU(),
            nn.Linear(512, num_target),
        )
示例#11
0
    def __init__(self,
                 node_dim=13,
                 edge_dim=5,
                 num_target=8,
                 node_hidden_dim=128,
                 edge_hidden_dim=128,
                 num_message_passing=6,
                 prep_hid_size=64):
        super(ChampsNet, self).__init__()

        self.num_message_passing = num_message_passing

        self.preprocess = nn.Sequential(
            LinearBn(node_dim, node_hidden_dim, act=nn.ReLU()))

        edge_net = nn.Sequential(
            LinearBn(edge_dim, edge_hidden_dim, act=nn.ReLU()),
            LinearBn(edge_hidden_dim, node_hidden_dim * node_hidden_dim)
            # edge_hidden_dim,  node_hidden_dim *node_hidden_dim
        )

        self.conv = gnn.NNConv(
            node_hidden_dim,
            node_hidden_dim,
            edge_net,
            aggr='mean',
            root_weight=True)  #node_hidden_dim, node_hidden_dim
        self.gru = nn.GRU(node_hidden_dim, node_hidden_dim)

        self.set2set = gnn.Set2Set(
            node_hidden_dim,
            processing_steps=num_message_passing)  # node_hidden_dim

        #predict coupling constant
        self.predict = nn.Sequential(
            LinearBn(4 * node_hidden_dim, num_target,
                     act=nn.ReLU()),  #node_hidden_dim
        )
示例#12
0
 def build_pool(self, in_channels, processing_steps=4, num_layers=1):
     return geom_nn.Set2Set(in_channels, processing_steps, num_layers)
示例#13
0
import torch
import torch_geometric.nn as gnn

set2set = gnn.Set2Set(128, processing_steps=2)
for i in range(1000):
    input = torch.randn(26, 128)
    output = set2set(input)