示例#1
0
def test_cg_conv():
    x1 = torch.randn(4, 8)
    x2 = torch.randn(2, 16)
    edge_index = torch.tensor([[0, 1, 2, 3], [0, 0, 1, 1]])
    row, col = edge_index
    adj = SparseTensor(row=row, col=col, sparse_sizes=(4, 4))

    conv = CGConv(8)
    assert conv.__repr__() == 'CGConv(8, dim=0)'
    out = conv(x1, edge_index)
    assert out.size() == (4, 8)
    assert conv(x1, edge_index, size=(4, 4)).tolist() == out.tolist()
    assert conv(x1, adj.t()).tolist() == out.tolist()

    t = '(Tensor, Tensor, OptTensor, Size) -> Tensor'
    jit = torch.jit.script(conv.jittable(t))
    assert jit(x1, edge_index).tolist() == out.tolist()
    assert jit(x1, edge_index, size=(4, 4)).tolist() == out.tolist()

    t = '(Tensor, SparseTensor, OptTensor, Size) -> Tensor'
    jit = torch.jit.script(conv.jittable(t))
    assert jit(x1, adj.t()).tolist() == out.tolist()

    adj = adj.sparse_resize((4, 2))
    conv = CGConv((8, 16))
    assert conv.__repr__() == 'CGConv((8, 16), dim=0)'
    out = conv((x1, x2), edge_index)
    assert out.size() == (2, 16)
    assert conv((x1, x2), edge_index, size=(4, 2)).tolist() == out.tolist()
    assert conv((x1, x2), adj.t()).tolist() == out.tolist()

    t = '(PairTensor, Tensor, OptTensor, Size) -> Tensor'
    jit = torch.jit.script(conv.jittable(t))
    assert jit((x1, x2), edge_index).tolist() == out.tolist()
    assert jit((x1, x2), edge_index, size=(4, 2)).tolist() == out.tolist()

    t = '(PairTensor, SparseTensor, OptTensor, Size) -> Tensor'
    jit = torch.jit.script(conv.jittable(t))
    assert jit((x1, x2), adj.t()).tolist() == out.tolist()

    # Test batch_norm true:
    adj = SparseTensor(row=row, col=col, sparse_sizes=(4, 4))
    conv = CGConv(8, batch_norm=True)
    assert conv.__repr__() == 'CGConv(8, dim=0)'
    out = conv(x1, edge_index)
    assert out.size() == (4, 8)
    assert conv(x1, edge_index, size=(4, 4)).tolist() == out.tolist()
    assert conv(x1, adj.t()).tolist() == out.tolist()

    t = '(Tensor, Tensor, OptTensor, Size) -> Tensor'
    jit = torch.jit.script(conv.jittable(t))
    assert jit(x1, edge_index).tolist() == out.tolist()
    assert jit(x1, edge_index, size=(4, 4)).tolist() == out.tolist()
示例#2
0
def test_cg_conv_with_edge_features():
    x1 = torch.randn(4, 8)
    x2 = torch.randn(2, 16)
    edge_index = torch.tensor([[0, 1, 2, 3], [0, 0, 1, 1]])
    row, col = edge_index
    value = torch.rand(row.size(0), 3)
    adj = SparseTensor(row=row, col=col, value=value, sparse_sizes=(4, 4))

    conv = CGConv(8, dim=3)
    assert conv.__repr__() == 'CGConv(8, dim=3)'
    out = conv(x1, edge_index, value)
    assert out.size() == (4, 8)
    assert conv(x1, edge_index, value, size=(4, 4)).tolist() == out.tolist()
    assert conv(x1, adj.t()).tolist() == out.tolist()

    t = '(Tensor, Tensor, OptTensor, Size) -> Tensor'
    jit = torch.jit.script(conv.jittable(t))
    assert jit(x1, edge_index, value).tolist() == out.tolist()
    assert jit(x1, edge_index, value, size=(4, 4)).tolist() == out.tolist()

    t = '(Tensor, SparseTensor, OptTensor, Size) -> Tensor'
    jit = torch.jit.script(conv.jittable(t))
    assert jit(x1, adj.t()).tolist() == out.tolist()

    adj = adj.sparse_resize((4, 2))
    conv = CGConv((8, 16), dim=3)
    assert conv.__repr__() == 'CGConv((8, 16), dim=3)'
    out = conv((x1, x2), edge_index, value)
    assert out.size() == (2, 16)
    assert conv((x1, x2), edge_index, value, (4, 2)).tolist() == out.tolist()
    assert conv((x1, x2), adj.t()).tolist() == out.tolist()

    t = '(PairTensor, Tensor, OptTensor, Size) -> Tensor'
    jit = torch.jit.script(conv.jittable(t))
    assert jit((x1, x2), edge_index, value).tolist() == out.tolist()
    assert jit((x1, x2), edge_index, value, (4, 2)).tolist() == out.tolist()

    t = '(PairTensor, SparseTensor, OptTensor, Size) -> Tensor'
    jit = torch.jit.script(conv.jittable(t))
    assert jit((x1, x2), adj.t()).tolist() == out.tolist()
示例#3
0
def test_cg_conv():
    edge_index = torch.tensor([[0, 0, 0, 1, 2, 3], [1, 2, 3, 0, 0, 0]])
    num_nodes = edge_index.max().item() + 1
    x = torch.randn((num_nodes, 16))
    pseudo = torch.rand((edge_index.size(1), 3))

    conv = CGConv(16, 3)
    assert conv.__repr__() == 'CGConv(16, 16, dim=3)'
    out = conv(x, edge_index, pseudo)
    assert out.size() == (num_nodes, 16)

    jit = torch.jit.script(conv.jittable())
    assert jit(x, edge_index, pseudo).tolist() == out.tolist()