示例#1
0
    def for_batch(self,
                  num_groups: int,
                  num_timesteps: int,
                  start_datetimes: Optional[np.ndarray] = None):

        for_batch = super().for_batch(num_groups=num_groups,
                                      num_timesteps=num_timesteps)

        # determine the delta (integer time accounting for different groups having different start datetimes)
        if start_datetimes is None:
            start_datetimes = np.zeros(num_groups)
        delta = self._dt_helper.make_delta_grid(start_datetimes, num_timesteps)

        # determine season:
        season = delta % self.seasonal_period

        # generate the fourier tensor:
        fourier_tens = fourier_tensor(time=Tensor(season),
                                      seasonal_period=self.seasonal_period,
                                      K=self.K)

        for state_element in self.state_elements:
            if state_element == 'position':
                continue
            r, c = (int(x) for x in state_element.split(sep=","))
            for_batch._adjust_transition(from_element=state_element,
                                         to_element='position',
                                         adjustment=split_flat(
                                             fourier_tens[:, :, r, c], dim=1))

        return for_batch
示例#2
0
    def for_batch(
            self,
            num_groups: int,
            num_timesteps: int,
            start_datetimes: Optional[np.ndarray] = None) -> ProcessForBatch:

        for_batch = super().for_batch(num_groups=num_groups,
                                      num_timesteps=num_timesteps)

        # determine the delta (integer time accounting for different groups having different start datetimes)
        delta = self.dt_tracker.get_delta(for_batch.num_groups,
                                          for_batch.num_timesteps,
                                          start_datetimes=start_datetimes)

        # determine season:
        season = delta % self.seasonal_period

        # generate the fourier tensor:
        fourier_tens = fourier_tensor(time=Tensor(season),
                                      seasonal_period=self.seasonal_period,
                                      K=self.K)

        for state_element in self.state_elements:
            if state_element == 'position':
                continue
            r, c = (int(x) for x in state_element.split(sep=","))
            for_batch.adjust_transition(from_element=state_element,
                                        to_element='position',
                                        adjustment=fourier_tens[:, :, r, c])

        return for_batch
示例#3
0
    def for_batch(self,
                  num_groups: int,
                  num_timesteps: int,
                  start_datetimes: Optional[np.ndarray] = None):

        for_batch = super().for_batch(num_groups=num_groups,
                                      num_timesteps=num_timesteps)

        # determine the delta (integer time accounting for different groups having different start datetimes)
        if start_datetimes is None:
            if self._dt_helper.start_datetime:
                raise TypeError("Missing argument `start_datetimes`.")
            start_datetimes = np.zeros(num_groups)
        delta = self._dt_helper.make_delta_grid(start_datetimes, num_timesteps)

        # determine season:
        season = delta % self.seasonal_period

        # generate the fourier tensor:
        fourier_tens = fourier_tensor(time=Tensor(season),
                                      seasonal_period=self.seasonal_period,
                                      K=self.K)

        for measure in self.measures:
            for state_element in self.state_elements:
                r, c = (int(x) for x in state_element.split(sep=","))
                for_batch._adjust_measure(measure=measure,
                                          state_element=state_element,
                                          adjustment=split_flat(
                                              fourier_tens[:, :, r, c], dim=1))

        return for_batch
示例#4
0
    def for_batch(self,
                  num_groups: int,
                  num_timesteps: int,
                  start_datetimes: Optional[np.ndarray] = None):

        for_batch = super().for_batch(num_groups=num_groups, num_timesteps=num_timesteps)

        # determine the delta (integer time accounting for different groups having different start datetimes)
        delta = self._get_delta(for_batch.num_groups, for_batch.num_timesteps, start_datetimes=start_datetimes)

        # determine season:
        season = delta % self.seasonal_period

        # generate the fourier tensor:
        fourier_tens = fourier_tensor(time=Tensor(season), seasonal_period=self.seasonal_period, K=self.K)

        for measure in self.measures:
            for state_element in self.state_elements:
                r, c = (int(x) for x in state_element.split(sep=","))
                for_batch._adjust_measure(
                    measure=measure,
                    state_element=state_element,
                    adjustment=split_flat(fourier_tens[:, :, r, c], dim=1)
                )

        return for_batch