def test_polynomial_mmd_averages(self): scores = kid_utils.polynomial_mmd_averages(codes_g=self.codes_g, codes_r=self.codes_r, n_subsets=4, subset_size=1) assert len(scores) == 4 assert type(scores[0]) == np.float64
def kid_score(num_samples, netG, dataset, seed=0, device=None, num_subsets=10, batch_size=50, verbose=True, feat_file=None, log_dir='./log', **kwargs): """ Computes KID score. Args: num_samples (int): The number of real and fake images to use for KID. num_subsets (int): Number of subsets to compute average MMD. netG (Module): Torch Module object representing the generator model. device (str): Device identifier to use for computation. seed (int): The random seed to use. dataset (str/Dataset): The name of the dataset to load if known, or a custom Dataset object batch_size (int): The batch size to feedforward for inference. feat_file (str): The path to specific inception features for real images. log_dir (str): Directory where features can be stored. verbose (bool): If True, prints progress. Returns: tuple: Scalar mean and std of KID scores computed. """ start_time = time.time() # Check inputs if device is None: device = torch.device('cuda:0' if torch.cuda.is_available() else "cpu") if isinstance(dataset, str): default_datasets = { 'cifar10', 'cifar100', 'stl10_48', 'imagenet_32', 'imagenet_128', 'celeba_64', 'celeba_128', 'lsun_bedroom', 'fake_data', } if dataset not in default_datasets: raise ValueError('For default datasets, must be one of {}'.format( default_datasets)) elif issubclass(type(dataset), torch.utils.data.Dataset): if feat_file is None: raise ValueError( "feat_file to save/load from cannot be empty if using a custom dataset." ) if not feat_file.endswith('.npz'): feat_file = feat_file + '.npz' else: raise ValueError( 'dataset must be either a Dataset object or a string.') # Make sure the random seeds are fixed torch.manual_seed(seed) random.seed(seed) np.random.seed(seed) # Directories inception_path = os.path.join('./inception_model') # Setup the inception graph inception_utils.create_inception_graph(inception_path) # Start producing features for real and fake images # if device.index is not None: # # Avoid unbounded memory usage # gpu_options = tf.compat.v1.GPUOptions(allow_growth=True, # per_process_gpu_memory_fraction=0.15, # visible_device_list=str(device.index)) # config = tf.compat.v1.ConfigProto(gpu_options=gpu_options) # else: # config = tf.compat.v1.ConfigProto(device_count={'GPU': 0}) config = tf.compat.v1.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.2 config.gpu_options.allow_growth = True with tf.compat.v1.Session(config=config) as sess: sess.run(tf.compat.v1.global_variables_initializer()) real_feat = compute_real_dist_feat(num_samples=num_samples, sess=sess, dataset=dataset, batch_size=batch_size, verbose=verbose, feat_file=feat_file, log_dir=log_dir, seed=seed, **kwargs) fake_feat = compute_gen_dist_feat(netG=netG, num_samples=num_samples, sess=sess, device=device, seed=seed, batch_size=batch_size, verbose=verbose) # Compute the KID score subset_size = num_samples // num_subsets scores = kid_utils.polynomial_mmd_averages(real_feat, fake_feat, n_subsets=num_subsets, subset_size=subset_size) mmd_score, mmd_std = float(np.mean(scores)), float(np.std(scores)) print("INFO: KID: {:.4f} ± {:.4f} [Time Taken: {:.4f} secs]".format( mmd_score, mmd_std, time.time() - start_time)) return mmd_score, mmd_std
def kid_score(num_subsets, subset_size, netG, device, seed, dataset_name, batch_size=50, verbose=True, feat_file=None, log_dir='./log'): """ Computes KID score. Args: num_subsets (int): Number of subsets to compute average MMD. subset_size (int): Size of subset for computing MMD. netG (Module): Torch Module object representing the generator model. device (str): Device identifier to use for computation. seed (int): The random seed to use. dataset_name (str): The name of the dataset to load. batch_size (int): The batch size to feedforward for inference. feat_file (str): The path to specific inception features for real images. log_dir (str): Directory where features can be stored. verbose (bool): If True, prints progress. Returns: tuple: Scalar mean and std of KID scores computed. """ start_time = time.time() # Make sure the random seeds are fixed torch.manual_seed(seed) random.seed(seed) np.random.seed(seed) # Directories inception_path = os.path.join(log_dir, 'metrics', 'inception_model') # Setup the inception graph inception_utils.create_inception_graph(inception_path) # Decide sample size num_samples = int(num_subsets * subset_size) # Start producing features for real and fake images if device.index is not None: # Avoid unbounded memory usage gpu_options = tf.GPUOptions(allow_growth=True, per_process_gpu_memory_fraction=0.15, visible_device_list=str(device.index)) config = tf.compat.v1.ConfigProto(gpu_options=gpu_options) else: config = tf.compat.v1.ConfigProto(device_count={'GPU': 0}) with tf.compat.v1.Session(config=config) as sess: sess.run(tf.compat.v1.global_variables_initializer()) real_feat = compute_real_dist_feat(num_samples=num_samples, sess=sess, dataset_name=dataset_name, batch_size=batch_size, verbose=verbose, feat_file=feat_file, log_dir=log_dir, seed=seed) fake_feat = compute_gen_dist_feat(netG=netG, num_samples=num_samples, sess=sess, device=device, seed=seed, batch_size=batch_size, verbose=verbose) # Compute the KID score scores = kid_utils.polynomial_mmd_averages(real_feat, fake_feat, n_subsets=num_subsets, subset_size=subset_size) mmd_score, mmd_std = float(np.mean(scores)), float(np.std(scores)) print("INFO: KID: {:.4f} ± {:.4f} [Time Taken: {:.4f} secs]".format( mmd_score, mmd_std, time.time() - start_time)) return mmd_score, mmd_std