示例#1
0
 def forward(self, data):
     if self._backbone_name == "kpconv":  # KPConv needs added ones for its x features
         data = AddOnes()(data)
         data.x = data.ones
     data_out = self._model["backbone"](data)
     return F.log_softmax(self._model["classifier"](data_out.x).squeeze(),
                          dim=-1)
示例#2
0
 def set_input(self, data, device):
     """Unpack input data from the dataloader and perform necessary pre-processing steps.
     Parameters:
         input: a dictionary that contains the data itself and its metadata information.
     """
     self.semantic_labels = data.y.flatten().to(self.device)
     if self.is_dense_format:
         self.input = data
         self._n_batches = data.pos.shape[0]
     else:
         if self._kpconv_backbone:
             data = AddOnes()(data)
             if data.x is not None:
                 data.x = torch.cat([data.x, data.ones.float()], dim=-1)
             else:
                 data.x = data.ones.float()
         self.input = data
         self._n_batches = torch.max(data.batch) + 1
示例#3
0
 def _set_input(self, data):
     """Unpack input data from the dataloader and perform necessary pre-processing steps.
     Parameters:
         input: a dictionary that contains the data itself and its metadata information.
     """
     # Forward through backbone model
     if self.is_dense_format:
         self.input = data
         self._num_batches = data.pos.shape[0]
     else:
         if self._kpconv_backbone:
             data = AddOnes()(data)
             if data.x is not None:
                 data.x = torch.cat([data.x, data.ones.float()], dim=-1)
             else:
                 data.x = data.ones.float()
         self.input = Data(pos=data.pos, x=data.x,
                           batch=data.batch).to(self.device)
         self._num_batches = len(data.id_scan)
示例#4
0
            -6.481465826011e-03, 8.051860151134e-03, -9.999466081774e-01,
            -7.337429464231e-02
        ],
        [
            9.999773098287e-01, -1.805528627661e-03, -6.496203536139e-03,
            -3.339968064433e-01
        ],
    ])
    pcd_s = np.fromfile(path_s, dtype=np.float32).reshape(-1, 4)[:, :3].dot(
        R_calib[:3, :3].T)
    pcd_t = np.fromfile(path_t, dtype=np.float32).reshape(-1, 4)[:, :3].dot(
        R_calib[:3, :3].T)

    transform = Compose([
        GridSampling3D(mode="last", size=0.3, quantize_coords=True),
        AddOnes(),
        AddFeatByKey(add_to_x=True, feat_name="ones"),
    ])

    data_s = transform(
        Batch(pos=torch.from_numpy(pcd_s).float(),
              batch=torch.zeros(pcd_s.shape[0]).long()))
    data_t = transform(
        Batch(pos=torch.from_numpy(pcd_t).float(),
              batch=torch.zeros(pcd_t.shape[0]).long()))

    model = PretainedRegistry.from_pretrained(
        "minkowski-registration-kitti").cuda()

    with torch.no_grad():
        model.set_input(data_s, "cuda")