示例#1
0
    def __init__(  # noqa
        self,
        config: ConfigSchema,
        model: Optional[MultiRelationEmbedder] = None,
        trainer: Optional[AbstractBatchProcessor] = None,
        evaluator: Optional[AbstractBatchProcessor] = None,
        rank: Rank = SINGLE_TRAINER,
        subprocess_init: Optional[Callable[[], None]] = None,
        stats_handler: StatsHandler = NOOP_STATS_HANDLER,
    ):
        """Each epoch/pass, for each partition pair, loads in embeddings and edgelist
        from disk, runs HOGWILD training on them, and writes partitions back to disk.
        """
        tag_logs_with_process_name(f"Trainer-{rank}")
        self.config = config
        if config.verbose > 0:
            import pprint

            pprint.PrettyPrinter().pprint(config.to_dict())

        logger.info("Loading entity counts...")
        entity_storage = ENTITY_STORAGES.make_instance(config.entity_path)
        entity_counts: Dict[str, List[int]] = {}
        for entity, econf in config.entities.items():
            entity_counts[entity] = []
            for part in range(econf.num_partitions):
                entity_counts[entity].append(entity_storage.load_count(entity, part))

        # Figure out how many lhs and rhs partitions we need
        holder = self.holder = EmbeddingHolder(config)

        logger.debug(
            f"nparts {holder.nparts_lhs} {holder.nparts_rhs} "
            f"types {holder.lhs_partitioned_types} {holder.rhs_partitioned_types}"
        )

        # We know ahead of time that we wil need 1-2 storages for each embedding type,
        # as well as the max size of this storage (num_entities x D).
        # We allocate these storages n advance in `embedding_storage_freelist`.
        # When we need storage for an entity type, we pop it from this free list,
        # and then add it back when we 'delete' the embedding table.
        embedding_storage_freelist: Dict[
            EntityName, Set[torch.FloatStorage]
        ] = defaultdict(set)
        for entity_type, counts in entity_counts.items():
            max_count = max(counts)
            num_sides = (
                (1 if entity_type in holder.lhs_partitioned_types else 0)
                + (1 if entity_type in holder.rhs_partitioned_types else 0)
                + (
                    1
                    if entity_type
                    in (holder.lhs_unpartitioned_types | holder.rhs_unpartitioned_types)
                    else 0
                )
            )
            for _ in range(num_sides):
                embedding_storage_freelist[entity_type].add(
                    allocate_shared_tensor(
                        (max_count, config.entity_dimension(entity_type)),
                        dtype=torch.float,
                    ).storage()
                )

        # create the handlers, threads, etc. for distributed training
        if config.num_machines > 1 or config.num_partition_servers > 0:
            if not 0 <= rank < config.num_machines:
                raise RuntimeError("Invalid rank for trainer")
            if not td.is_available():
                raise RuntimeError(
                    "The installed PyTorch version doesn't provide "
                    "distributed training capabilities."
                )
            ranks = ProcessRanks.from_num_invocations(
                config.num_machines, config.num_partition_servers
            )

            num_ps_groups = config.num_groups_for_partition_server
            groups: List[List[int]] = [ranks.trainers]  # barrier group
            groups += [
                ranks.trainers + ranks.partition_servers
            ] * num_ps_groups  # ps groups
            group_idxs_for_partition_servers = range(1, len(groups))

            if rank == SINGLE_TRAINER:
                logger.info("Setup lock server...")
                start_server(
                    LockServer(
                        num_clients=len(ranks.trainers),
                        nparts_lhs=holder.nparts_lhs,
                        nparts_rhs=holder.nparts_rhs,
                        entities_lhs=holder.lhs_partitioned_types,
                        entities_rhs=holder.rhs_partitioned_types,
                        entity_counts=entity_counts,
                        init_tree=config.distributed_tree_init_order,
                        stats_handler=stats_handler,
                    ),
                    process_name="LockServer",
                    init_method=config.distributed_init_method,
                    world_size=ranks.world_size,
                    server_rank=ranks.lock_server,
                    groups=groups,
                    subprocess_init=subprocess_init,
                )

            self.bucket_scheduler = DistributedBucketScheduler(
                server_rank=ranks.lock_server, client_rank=ranks.trainers[rank]
            )

            logger.info("Setup param server...")
            start_server(
                ParameterServer(num_clients=len(ranks.trainers)),
                process_name=f"ParamS-{rank}",
                init_method=config.distributed_init_method,
                world_size=ranks.world_size,
                server_rank=ranks.parameter_servers[rank],
                groups=groups,
                subprocess_init=subprocess_init,
            )

            parameter_sharer = ParameterSharer(
                process_name=f"ParamC-{rank}",
                client_rank=ranks.parameter_clients[rank],
                all_server_ranks=ranks.parameter_servers,
                init_method=config.distributed_init_method,
                world_size=ranks.world_size,
                groups=groups,
                subprocess_init=subprocess_init,
            )

            if config.num_partition_servers == -1:
                start_server(
                    ParameterServer(
                        num_clients=len(ranks.trainers),
                        group_idxs=group_idxs_for_partition_servers,
                        log_stats=True,
                    ),
                    process_name=f"PartS-{rank}",
                    init_method=config.distributed_init_method,
                    world_size=ranks.world_size,
                    server_rank=ranks.partition_servers[rank],
                    groups=groups,
                    subprocess_init=subprocess_init,
                )

            groups = init_process_group(
                rank=ranks.trainers[rank],
                world_size=ranks.world_size,
                init_method=config.distributed_init_method,
                groups=groups,
            )
            trainer_group, *groups_for_partition_servers = groups
            self.barrier_group = trainer_group

            if len(ranks.partition_servers) > 0:
                partition_client = PartitionClient(
                    ranks.partition_servers,
                    groups=groups_for_partition_servers,
                    log_stats=True,
                )
            else:
                partition_client = None
        else:
            self.barrier_group = None
            self.bucket_scheduler = SingleMachineBucketScheduler(
                holder.nparts_lhs, holder.nparts_rhs, config.bucket_order, stats_handler
            )
            parameter_sharer = None
            partition_client = None
            hide_distributed_logging()

        # fork early for HOGWILD threads
        logger.info("Creating workers...")
        self.num_workers = get_num_workers(config.workers)
        self.pool = create_pool(
            self.num_workers,
            subprocess_name=f"TWorker-{rank}",
            subprocess_init=subprocess_init,
        )

        checkpoint_manager = CheckpointManager(
            config.checkpoint_path,
            rank=rank,
            num_machines=config.num_machines,
            partition_client=partition_client,
            subprocess_name=f"BackgRW-{rank}",
            subprocess_init=subprocess_init,
        )
        self.checkpoint_manager = checkpoint_manager
        checkpoint_manager.register_metadata_provider(ConfigMetadataProvider(config))
        if rank == 0:
            checkpoint_manager.write_config(config)

        num_edge_chunks = get_num_edge_chunks(config)

        self.iteration_manager = IterationManager(
            config.num_epochs,
            config.edge_paths,
            num_edge_chunks,
            iteration_idx=checkpoint_manager.checkpoint_version,
        )
        checkpoint_manager.register_metadata_provider(self.iteration_manager)

        logger.info("Initializing global model...")
        if model is None:
            model = make_model(config)
        model.share_memory()
        loss_fn = LOSS_FUNCTIONS.get_class(config.loss_fn)(margin=config.margin)
        relation_weights = [relation.weight for relation in config.relations]
        if trainer is None:
            trainer = Trainer(
                model_optimizer=make_optimizer(config, model.parameters(), False),
                loss_fn=loss_fn,
                relation_weights=relation_weights,
            )
        if evaluator is None:
            eval_overrides = {}
            if config.eval_num_batch_negs is not None:
                eval_overrides["num_batch_negs"] = config.eval_num_batch_negs
            if config.eval_num_uniform_negs is not None:
                eval_overrides["num_uniform_negs"] = config.eval_num_uniform_negs

            evaluator = RankingEvaluator(
                loss_fn=loss_fn,
                relation_weights=relation_weights,
                overrides=eval_overrides,
            )

        if config.init_path is not None:
            self.loadpath_manager = CheckpointManager(config.init_path)
        else:
            self.loadpath_manager = None

        # load model from checkpoint or loadpath, if available
        state_dict, optim_state = checkpoint_manager.maybe_read_model()
        if state_dict is None and self.loadpath_manager is not None:
            state_dict, optim_state = self.loadpath_manager.maybe_read_model()
        if state_dict is not None:
            model.load_state_dict(state_dict, strict=False)
        if optim_state is not None:
            trainer.model_optimizer.load_state_dict(optim_state)

        logger.debug("Loading unpartitioned entities...")
        for entity in holder.lhs_unpartitioned_types | holder.rhs_unpartitioned_types:
            count = entity_counts[entity][0]
            s = embedding_storage_freelist[entity].pop()
            dimension = config.entity_dimension(entity)
            embs = torch.FloatTensor(s).view(-1, dimension)[:count]
            embs, optimizer = self._load_embeddings(entity, UNPARTITIONED, out=embs)
            holder.unpartitioned_embeddings[entity] = embs
            trainer.unpartitioned_optimizers[entity] = optimizer

        # start communicating shared parameters with the parameter server
        if parameter_sharer is not None:
            shared_parameters: Set[int] = set()
            for name, param in model.named_parameters():
                if id(param) in shared_parameters:
                    continue
                shared_parameters.add(id(param))
                key = f"model.{name}"
                logger.info(
                    f"Adding {key} ({param.numel()} params) to parameter server"
                )
                parameter_sharer.set_param(key, param.data)
            for entity, embs in holder.unpartitioned_embeddings.items():
                key = f"entity.{entity}"
                logger.info(f"Adding {key} ({embs.numel()} params) to parameter server")
                parameter_sharer.set_param(key, embs.data)

        # store everything in self
        self.model = model
        self.trainer = trainer
        self.evaluator = evaluator
        self.rank = rank
        self.entity_counts = entity_counts
        self.embedding_storage_freelist = embedding_storage_freelist
        self.stats_handler = stats_handler

        self.strict = False
示例#2
0
class TrainingCoordinator:
    def __init__(  # noqa
        self,
        config: ConfigSchema,
        model: Optional[MultiRelationEmbedder] = None,
        trainer: Optional[AbstractBatchProcessor] = None,
        evaluator: Optional[AbstractBatchProcessor] = None,
        rank: Rank = SINGLE_TRAINER,
        subprocess_init: Optional[Callable[[], None]] = None,
        stats_handler: StatsHandler = NOOP_STATS_HANDLER,
    ):
        """Each epoch/pass, for each partition pair, loads in embeddings and edgelist
        from disk, runs HOGWILD training on them, and writes partitions back to disk.
        """
        tag_logs_with_process_name(f"Trainer-{rank}")
        self.config = config
        if config.verbose > 0:
            import pprint

            pprint.PrettyPrinter().pprint(config.to_dict())

        logger.info("Loading entity counts...")
        entity_storage = ENTITY_STORAGES.make_instance(config.entity_path)
        entity_counts: Dict[str, List[int]] = {}
        for entity, econf in config.entities.items():
            entity_counts[entity] = []
            for part in range(econf.num_partitions):
                entity_counts[entity].append(entity_storage.load_count(entity, part))

        # Figure out how many lhs and rhs partitions we need
        holder = self.holder = EmbeddingHolder(config)

        logger.debug(
            f"nparts {holder.nparts_lhs} {holder.nparts_rhs} "
            f"types {holder.lhs_partitioned_types} {holder.rhs_partitioned_types}"
        )

        # We know ahead of time that we wil need 1-2 storages for each embedding type,
        # as well as the max size of this storage (num_entities x D).
        # We allocate these storages n advance in `embedding_storage_freelist`.
        # When we need storage for an entity type, we pop it from this free list,
        # and then add it back when we 'delete' the embedding table.
        embedding_storage_freelist: Dict[
            EntityName, Set[torch.FloatStorage]
        ] = defaultdict(set)
        for entity_type, counts in entity_counts.items():
            max_count = max(counts)
            num_sides = (
                (1 if entity_type in holder.lhs_partitioned_types else 0)
                + (1 if entity_type in holder.rhs_partitioned_types else 0)
                + (
                    1
                    if entity_type
                    in (holder.lhs_unpartitioned_types | holder.rhs_unpartitioned_types)
                    else 0
                )
            )
            for _ in range(num_sides):
                embedding_storage_freelist[entity_type].add(
                    allocate_shared_tensor(
                        (max_count, config.entity_dimension(entity_type)),
                        dtype=torch.float,
                    ).storage()
                )

        # create the handlers, threads, etc. for distributed training
        if config.num_machines > 1 or config.num_partition_servers > 0:
            if not 0 <= rank < config.num_machines:
                raise RuntimeError("Invalid rank for trainer")
            if not td.is_available():
                raise RuntimeError(
                    "The installed PyTorch version doesn't provide "
                    "distributed training capabilities."
                )
            ranks = ProcessRanks.from_num_invocations(
                config.num_machines, config.num_partition_servers
            )

            num_ps_groups = config.num_groups_for_partition_server
            groups: List[List[int]] = [ranks.trainers]  # barrier group
            groups += [
                ranks.trainers + ranks.partition_servers
            ] * num_ps_groups  # ps groups
            group_idxs_for_partition_servers = range(1, len(groups))

            if rank == SINGLE_TRAINER:
                logger.info("Setup lock server...")
                start_server(
                    LockServer(
                        num_clients=len(ranks.trainers),
                        nparts_lhs=holder.nparts_lhs,
                        nparts_rhs=holder.nparts_rhs,
                        entities_lhs=holder.lhs_partitioned_types,
                        entities_rhs=holder.rhs_partitioned_types,
                        entity_counts=entity_counts,
                        init_tree=config.distributed_tree_init_order,
                        stats_handler=stats_handler,
                    ),
                    process_name="LockServer",
                    init_method=config.distributed_init_method,
                    world_size=ranks.world_size,
                    server_rank=ranks.lock_server,
                    groups=groups,
                    subprocess_init=subprocess_init,
                )

            self.bucket_scheduler = DistributedBucketScheduler(
                server_rank=ranks.lock_server, client_rank=ranks.trainers[rank]
            )

            logger.info("Setup param server...")
            start_server(
                ParameterServer(num_clients=len(ranks.trainers)),
                process_name=f"ParamS-{rank}",
                init_method=config.distributed_init_method,
                world_size=ranks.world_size,
                server_rank=ranks.parameter_servers[rank],
                groups=groups,
                subprocess_init=subprocess_init,
            )

            parameter_sharer = ParameterSharer(
                process_name=f"ParamC-{rank}",
                client_rank=ranks.parameter_clients[rank],
                all_server_ranks=ranks.parameter_servers,
                init_method=config.distributed_init_method,
                world_size=ranks.world_size,
                groups=groups,
                subprocess_init=subprocess_init,
            )

            if config.num_partition_servers == -1:
                start_server(
                    ParameterServer(
                        num_clients=len(ranks.trainers),
                        group_idxs=group_idxs_for_partition_servers,
                        log_stats=True,
                    ),
                    process_name=f"PartS-{rank}",
                    init_method=config.distributed_init_method,
                    world_size=ranks.world_size,
                    server_rank=ranks.partition_servers[rank],
                    groups=groups,
                    subprocess_init=subprocess_init,
                )

            groups = init_process_group(
                rank=ranks.trainers[rank],
                world_size=ranks.world_size,
                init_method=config.distributed_init_method,
                groups=groups,
            )
            trainer_group, *groups_for_partition_servers = groups
            self.barrier_group = trainer_group

            if len(ranks.partition_servers) > 0:
                partition_client = PartitionClient(
                    ranks.partition_servers,
                    groups=groups_for_partition_servers,
                    log_stats=True,
                )
            else:
                partition_client = None
        else:
            self.barrier_group = None
            self.bucket_scheduler = SingleMachineBucketScheduler(
                holder.nparts_lhs, holder.nparts_rhs, config.bucket_order, stats_handler
            )
            parameter_sharer = None
            partition_client = None
            hide_distributed_logging()

        # fork early for HOGWILD threads
        logger.info("Creating workers...")
        self.num_workers = get_num_workers(config.workers)
        self.pool = create_pool(
            self.num_workers,
            subprocess_name=f"TWorker-{rank}",
            subprocess_init=subprocess_init,
        )

        checkpoint_manager = CheckpointManager(
            config.checkpoint_path,
            rank=rank,
            num_machines=config.num_machines,
            partition_client=partition_client,
            subprocess_name=f"BackgRW-{rank}",
            subprocess_init=subprocess_init,
        )
        self.checkpoint_manager = checkpoint_manager
        checkpoint_manager.register_metadata_provider(ConfigMetadataProvider(config))
        if rank == 0:
            checkpoint_manager.write_config(config)

        num_edge_chunks = get_num_edge_chunks(config)

        self.iteration_manager = IterationManager(
            config.num_epochs,
            config.edge_paths,
            num_edge_chunks,
            iteration_idx=checkpoint_manager.checkpoint_version,
        )
        checkpoint_manager.register_metadata_provider(self.iteration_manager)

        logger.info("Initializing global model...")
        if model is None:
            model = make_model(config)
        model.share_memory()
        loss_fn = LOSS_FUNCTIONS.get_class(config.loss_fn)(margin=config.margin)
        relation_weights = [relation.weight for relation in config.relations]
        if trainer is None:
            trainer = Trainer(
                model_optimizer=make_optimizer(config, model.parameters(), False),
                loss_fn=loss_fn,
                relation_weights=relation_weights,
            )
        if evaluator is None:
            eval_overrides = {}
            if config.eval_num_batch_negs is not None:
                eval_overrides["num_batch_negs"] = config.eval_num_batch_negs
            if config.eval_num_uniform_negs is not None:
                eval_overrides["num_uniform_negs"] = config.eval_num_uniform_negs

            evaluator = RankingEvaluator(
                loss_fn=loss_fn,
                relation_weights=relation_weights,
                overrides=eval_overrides,
            )

        if config.init_path is not None:
            self.loadpath_manager = CheckpointManager(config.init_path)
        else:
            self.loadpath_manager = None

        # load model from checkpoint or loadpath, if available
        state_dict, optim_state = checkpoint_manager.maybe_read_model()
        if state_dict is None and self.loadpath_manager is not None:
            state_dict, optim_state = self.loadpath_manager.maybe_read_model()
        if state_dict is not None:
            model.load_state_dict(state_dict, strict=False)
        if optim_state is not None:
            trainer.model_optimizer.load_state_dict(optim_state)

        logger.debug("Loading unpartitioned entities...")
        for entity in holder.lhs_unpartitioned_types | holder.rhs_unpartitioned_types:
            count = entity_counts[entity][0]
            s = embedding_storage_freelist[entity].pop()
            dimension = config.entity_dimension(entity)
            embs = torch.FloatTensor(s).view(-1, dimension)[:count]
            embs, optimizer = self._load_embeddings(entity, UNPARTITIONED, out=embs)
            holder.unpartitioned_embeddings[entity] = embs
            trainer.unpartitioned_optimizers[entity] = optimizer

        # start communicating shared parameters with the parameter server
        if parameter_sharer is not None:
            shared_parameters: Set[int] = set()
            for name, param in model.named_parameters():
                if id(param) in shared_parameters:
                    continue
                shared_parameters.add(id(param))
                key = f"model.{name}"
                logger.info(
                    f"Adding {key} ({param.numel()} params) to parameter server"
                )
                parameter_sharer.set_param(key, param.data)
            for entity, embs in holder.unpartitioned_embeddings.items():
                key = f"entity.{entity}"
                logger.info(f"Adding {key} ({embs.numel()} params) to parameter server")
                parameter_sharer.set_param(key, embs.data)

        # store everything in self
        self.model = model
        self.trainer = trainer
        self.evaluator = evaluator
        self.rank = rank
        self.entity_counts = entity_counts
        self.embedding_storage_freelist = embedding_storage_freelist
        self.stats_handler = stats_handler

        self.strict = False

    def train(self) -> None:

        holder = self.holder
        config = self.config
        iteration_manager = self.iteration_manager

        total_buckets = holder.nparts_lhs * holder.nparts_rhs

        # yield stats from checkpoint, to reconstruct
        # saved part of the learning curve
        if self.rank == SINGLE_TRAINER:
            for stats_dict in self.checkpoint_manager.maybe_read_stats():
                index: int = stats_dict["index"]
                stats: Optional[Stats] = None
                if "stats" in stats_dict:
                    stats: Stats = Stats.from_dict(stats_dict["stats"])
                eval_stats_before: Optional[Stats] = None
                if "eval_stats_before" in stats_dict:
                    eval_stats_before = Stats.from_dict(stats_dict["eval_stats_before"])
                eval_stats_after: Optional[Stats] = None
                if "eval_stats_after" in stats_dict:
                    eval_stats_after = Stats.from_dict(stats_dict["eval_stats_after"])
                eval_stats_chunk_avg: Optional[Stats] = None
                if "eval_stats_chunk_avg" in stats_dict:
                    eval_stats_chunk_avg = Stats.from_dict(
                        stats_dict["eval_stats_chunk_avg"]
                    )
                self.stats_handler.on_stats(
                    index,
                    eval_stats_before,
                    stats,
                    eval_stats_after,
                    eval_stats_chunk_avg,
                )

        for epoch_idx, edge_path_idx, edge_chunk_idx in iteration_manager:
            logger.info(
                f"Starting epoch {epoch_idx + 1} / {iteration_manager.num_epochs}, "
                f"edge path {edge_path_idx + 1} / {iteration_manager.num_edge_paths}, "
                f"edge chunk {edge_chunk_idx + 1} / {iteration_manager.num_edge_chunks}"
            )
            edge_storage = EDGE_STORAGES.make_instance(iteration_manager.edge_path)
            logger.info(f"Edge path: {iteration_manager.edge_path}")

            self._barrier()
            dist_logger.info("Lock client new epoch...")
            self.bucket_scheduler.new_pass(
                is_first=iteration_manager.iteration_idx == 0
            )
            self._barrier()

            remaining = total_buckets
            cur_b: Optional[Bucket] = None
            cur_stats: Optional[BucketStats] = None
            while remaining > 0:
                old_b: Optional[Bucket] = cur_b
                old_stats: Optional[BucketStats] = cur_stats
                cur_b, remaining = self.bucket_scheduler.acquire_bucket()
                logger.info(f"still in queue: {remaining}")
                if cur_b is None:
                    cur_stats = None
                    if old_b is not None:
                        # if you couldn't get a new pair, release the lock
                        # to prevent a deadlock!
                        tic = time.perf_counter()
                        release_bytes = self._swap_partitioned_embeddings(
                            old_b, None, old_stats
                        )
                        release_time = time.perf_counter() - tic
                        logger.info(
                            f"Swapping old embeddings to release lock. io: {release_time:.2f} s for {release_bytes:,} bytes "
                            f"( {release_bytes / release_time / 1e6:.2f} MB/sec )"
                        )
                    time.sleep(1)  # don't hammer td
                    continue

                tic = time.perf_counter()
                self.cur_b = cur_b
                bucket_logger = BucketLogger(logger, bucket=cur_b)
                self.bucket_logger = bucket_logger

                io_bytes = self._swap_partitioned_embeddings(old_b, cur_b, old_stats)
                self.model.set_all_embeddings(holder, cur_b)

                current_index = (
                    iteration_manager.iteration_idx + 1
                ) * total_buckets - remaining

                bucket_logger.debug("Loading edges")
                edges = edge_storage.load_chunk_of_edges(
                    cur_b.lhs,
                    cur_b.rhs,
                    edge_chunk_idx,
                    iteration_manager.num_edge_chunks,
                    shared=True,
                )
                num_edges = len(edges)

                # this might be off in the case of tensorlist or extra edge fields
                io_bytes += edges.lhs.tensor.numel() * edges.lhs.tensor.element_size()
                io_bytes += edges.rhs.tensor.numel() * edges.rhs.tensor.element_size()
                io_bytes += edges.rel.numel() * edges.rel.element_size()
                io_time = time.perf_counter() - tic
                tic = time.perf_counter()
                bucket_logger.debug("Shuffling edges")
                # Fix a seed to get the same permutation every time; have it
                # depend on all and only what affects the set of edges.

                # Note: for the sake of efficiency, we sample eval edge idxs
                # from the edge set *with replacement*, meaning that there may
                # be duplicates of the same edge in the eval set. When we swap
                # edges into the eval set, if there are duplicates then all
                # but one will be clobbered. These collisions are unlikely
                # if eval_fraction is small.
                #
                # Importantly, this eval sampling strategy is theoretically
                # sound:
                # * Training and eval sets are (exactly) disjoint
                # * Eval set may have (rare) duplicates, but they are
                #   uniformly sampled so it's still an unbiased estimator
                #   of the out-of-sample statistics
                num_eval_edges = int(num_edges * config.eval_fraction)
                num_train_edges = num_edges - num_eval_edges
                if num_eval_edges > 0:
                    g = torch.Generator()
                    g.manual_seed(
                        hash((edge_path_idx, edge_chunk_idx, cur_b.lhs, cur_b.rhs))
                    )
                    eval_edge_idxs = torch.randint(
                        num_edges, (num_eval_edges,), dtype=torch.long, generator=g
                    )
                else:
                    eval_edge_idxs = None

                # HOGWILD evaluation before training
                eval_stats_before = self._coordinate_eval(edges, eval_edge_idxs)
                if eval_stats_before is not None:
                    bucket_logger.info(f"Stats before training: {eval_stats_before}")
                eval_time = time.perf_counter() - tic
                tic = time.perf_counter()

                # HOGWILD training
                bucket_logger.debug("Waiting for workers to perform training")
                stats = self._coordinate_train(edges, eval_edge_idxs, epoch_idx)
                if stats is not None:
                    bucket_logger.info(f"Training stats: {stats}")
                train_time = time.perf_counter() - tic
                tic = time.perf_counter()

                # HOGWILD evaluation after training
                eval_stats_after = self._coordinate_eval(edges, eval_edge_idxs)
                if eval_stats_after is not None:
                    bucket_logger.info(f"Stats after training: {eval_stats_after}")

                eval_time += time.perf_counter() - tic

                bucket_logger.info(
                    f"bucket {total_buckets - remaining} / {total_buckets} : "
                    f"Trained {num_train_edges} edges in {train_time:.2f} s "
                    f"( {num_train_edges / train_time / 1e6:.2g} M/sec ); "
                    f"Eval 2*{num_eval_edges} edges in {eval_time:.2f} s "
                    f"( {2 * num_eval_edges / eval_time / 1e6:.2g} M/sec ); "
                    f"io: {io_time:.2f} s for {io_bytes:,} bytes ( {io_bytes / io_time / 1e6:.2f} MB/sec )"
                )

                self.model.clear_all_embeddings()

                cur_stats = BucketStats(
                    lhs_partition=cur_b.lhs,
                    rhs_partition=cur_b.rhs,
                    index=current_index,
                    train=stats,
                    eval_before=eval_stats_before,
                    eval_after=eval_stats_after,
                )

            # release the final bucket
            self._swap_partitioned_embeddings(cur_b, None, cur_stats)

            # Distributed Processing: all machines can leave the barrier now.
            self._barrier()

            current_index = (iteration_manager.iteration_idx + 1) * total_buckets - 1

            self._maybe_write_checkpoint(
                epoch_idx, edge_path_idx, edge_chunk_idx, current_index
            )

            # now we're sure that all partition files exist,
            # so be strict about loading them
            self.strict = True

    def close(self):
        # cleanup
        self.pool.close()
        self.pool.join()

        self._barrier()

        self.checkpoint_manager.close()
        if self.loadpath_manager is not None:
            self.loadpath_manager.close()

        # FIXME join distributed workers (not really necessary)

        logger.info("Exiting")

    ###########################################################################
    # private functions
    ###########################################################################

    def _barrier(self) -> None:
        if self.barrier_group is not None:
            td.barrier(group=self.barrier_group)

    def _load_embeddings(
        self,
        entity: EntityName,
        part: Partition,
        out: FloatTensorType,
        strict: bool = False,
        force_dirty: bool = False,
    ) -> Tuple[torch.nn.Parameter, Optimizer]:
        if strict:
            embs, optim_state = self.checkpoint_manager.read(
                entity, part, out=out, force_dirty=force_dirty
            )
        else:
            # Strict is only false during the first iteration, because in that
            # case the checkpoint may not contain any data (unless a previous
            # run was resumed) so we fall back on initial values.
            embs, optim_state = self.checkpoint_manager.maybe_read(
                entity, part, out=out, force_dirty=force_dirty
            )
            if embs is None and self.loadpath_manager is not None:
                embs, optim_state = self.loadpath_manager.maybe_read(
                    entity, part, out=out
                )
            if embs is None:
                embs = out
                fast_approx_rand(embs)
                embs.mul_(self.config.init_scale)
                optim_state = None
        embs = torch.nn.Parameter(embs)
        optimizer = make_optimizer(self.config, [embs], True)
        if optim_state is not None:
            optimizer.load_state_dict(optim_state)
        return embs, optimizer

    def _swap_partitioned_embeddings(
        self,
        old_b: Optional[Bucket],
        new_b: Optional[Bucket],
        old_stats: Optional[BucketStats],
    ) -> int:
        io_bytes = 0
        logger.info(f"Swapping partitioned embeddings {old_b} {new_b}")

        holder = self.holder
        old_parts: Set[Tuple[EntityName, Partition]] = set()
        if old_b is not None:
            old_parts.update((e, old_b.lhs) for e in holder.lhs_partitioned_types)
            old_parts.update((e, old_b.rhs) for e in holder.rhs_partitioned_types)
        new_parts: Set[Tuple[EntityName, Partition]] = set()
        if new_b is not None:
            new_parts.update((e, new_b.lhs) for e in holder.lhs_partitioned_types)
            new_parts.update((e, new_b.rhs) for e in holder.rhs_partitioned_types)

        assert old_parts == holder.partitioned_embeddings.keys()

        if old_b is not None:
            if old_stats is None:
                raise TypeError("Got old bucket but not its stats")
            logger.info("Saving partitioned embeddings to checkpoint")
            for entity, part in old_parts - new_parts:
                logger.debug(f"Saving ({entity} {part})")
                embs = holder.partitioned_embeddings.pop((entity, part))
                optimizer = self.trainer.partitioned_optimizers.pop((entity, part))
                self.checkpoint_manager.write(
                    entity, part, embs.detach(), optimizer.state_dict()
                )
                self.embedding_storage_freelist[entity].add(embs.storage())
                io_bytes += embs.numel() * embs.element_size()  # ignore optim state
                # these variables are holding large objects; let them be freed
                del embs
                del optimizer

            self.bucket_scheduler.release_bucket(old_b, old_stats)

        if new_b is not None:
            logger.info("Loading partitioned embeddings from checkpoint")
            for entity, part in new_parts - old_parts:
                logger.debug(f"Loading ({entity} {part})")
                force_dirty = self.bucket_scheduler.check_and_set_dirty(entity, part)
                count = self.entity_counts[entity][part]
                s = self.embedding_storage_freelist[entity].pop()
                dimension = self.config.entity_dimension(entity)
                embs = torch.FloatTensor(s).view(-1, dimension)[:count]
                embs, optimizer = self._load_embeddings(
                    entity, part, out=embs, strict=self.strict, force_dirty=force_dirty
                )
                holder.partitioned_embeddings[entity, part] = embs
                self.trainer.partitioned_optimizers[entity, part] = optimizer
                io_bytes += embs.numel() * embs.element_size()  # ignore optim state

        assert new_parts == holder.partitioned_embeddings.keys()

        return io_bytes

    def _coordinate_train(self, edges, eval_edge_idxs, epoch_idx) -> Stats:
        assert self.config.num_gpus == 0, "GPU training not supported"

        if eval_edge_idxs is not None:
            num_train_edges = len(edges) - len(eval_edge_idxs)
            train_edge_idxs = torch.arange(len(edges))
            train_edge_idxs[eval_edge_idxs] = torch.arange(num_train_edges, len(edges))
            train_edge_idxs = train_edge_idxs[:num_train_edges]
            edge_perm = train_edge_idxs[torch.randperm(num_train_edges)]
        else:
            edge_perm = torch.randperm(len(edges))

        future_all_stats = self.pool.map_async(
            call,
            [
                partial(
                    process_in_batches,
                    batch_size=self.config.batch_size,
                    model=self.model,
                    batch_processor=self.trainer,
                    edges=edges,
                    indices=edge_perm[s],
                    # FIXME should we only delay if iteration_idx == 0?
                    delay=self.config.hogwild_delay
                    if epoch_idx == 0 and self.rank > 0
                    else 0,
                )
                for rank, s in enumerate(
                    split_almost_equally(edge_perm.size(0), num_parts=self.num_workers)
                )
            ],
        )
        all_stats = get_async_result(future_all_stats, self.pool)
        return Stats.sum(all_stats).average()

    def _coordinate_eval(self, edges, eval_edge_idxs) -> Optional[Stats]:
        eval_batch_size = round_up_to_nearest_multiple(
            self.config.batch_size, self.config.eval_num_batch_negs
        )
        if eval_edge_idxs is not None:
            self.bucket_logger.debug("Waiting for workers to perform evaluation")
            future_all_eval_stats = self.pool.map_async(
                call,
                [
                    partial(
                        process_in_batches,
                        batch_size=eval_batch_size,
                        model=self.model,
                        batch_processor=self.evaluator,
                        edges=edges,
                        indices=eval_edge_idxs[s],
                    )
                    for s in split_almost_equally(
                        eval_edge_idxs.size(0), num_parts=self.num_workers
                    )
                ],
            )
            all_eval_stats = get_async_result(future_all_eval_stats, self.pool)
            return Stats.sum(all_eval_stats).average()
        else:
            return None

    def _maybe_write_checkpoint(
        self,
        epoch_idx: int,
        edge_path_idx: int,
        edge_chunk_idx: int,
        current_index: int,
    ) -> None:

        config = self.config

        # Preserving a checkpoint requires two steps:
        # - create a snapshot (w/ symlinks) after it's first written;
        # - don't delete it once the following one is written.
        # These two happen in two successive iterations of the main loop: the
        # one just before and the one just after the epoch boundary.
        preserve_old_checkpoint = should_preserve_old_checkpoint(
            self.iteration_manager, config.checkpoint_preservation_interval
        )
        preserve_new_checkpoint = should_preserve_old_checkpoint(
            self.iteration_manager + 1, config.checkpoint_preservation_interval
        )

        # Write metadata: for multiple machines, write from rank-0
        logger.info(
            f"Finished epoch {epoch_idx + 1} / {self.iteration_manager.num_epochs}, "
            f"edge path {edge_path_idx + 1} / {self.iteration_manager.num_edge_paths}, "
            f"edge chunk {edge_chunk_idx + 1} / "
            f"{self.iteration_manager.num_edge_chunks}"
        )
        if self.rank == 0:
            for entity, embs in self.holder.unpartitioned_embeddings.items():
                logger.info(f"Writing {entity} embeddings")
                optimizer = self.trainer.unpartitioned_optimizers[entity]
                self.checkpoint_manager.write(
                    entity,
                    UNPARTITIONED,
                    embs.detach(),
                    optimizer.state_dict(),
                    unpartitioned=True,
                )

            logger.info("Writing the metadata")
            state_dict: ModuleStateDict = self.model.state_dict()
            self.checkpoint_manager.write_model(
                state_dict, self.trainer.model_optimizer.state_dict()
            )

            logger.info("Writing the training stats")
            all_stats_dicts: List[Dict[str, Any]] = []
            bucket_eval_stats_list = []
            chunk_stats_dict = {
                "epoch_idx": epoch_idx,
                "edge_path_idx": edge_path_idx,
                "edge_chunk_idx": edge_chunk_idx,
            }
            for stats in self.bucket_scheduler.get_stats_for_pass():
                stats_dict = {
                    "lhs_partition": stats.lhs_partition,
                    "rhs_partition": stats.rhs_partition,
                    "index": stats.index,
                    "stats": stats.train.to_dict(),
                }
                if stats.eval_before is not None:
                    stats_dict["eval_stats_before"] = stats.eval_before.to_dict()
                    bucket_eval_stats_list.append(stats.eval_before)

                if stats.eval_after is not None:
                    stats_dict["eval_stats_after"] = stats.eval_after.to_dict()

                stats_dict.update(chunk_stats_dict)
                all_stats_dicts.append(stats_dict)

            if len(bucket_eval_stats_list) != 0:
                eval_stats_chunk_avg = Stats.average_list(bucket_eval_stats_list)
                self.stats_handler.on_stats(
                    index=current_index, eval_stats_chunk_avg=eval_stats_chunk_avg
                )
                chunk_stats_dict["index"] = current_index
                chunk_stats_dict[
                    "eval_stats_chunk_avg"
                ] = eval_stats_chunk_avg.to_dict()
                all_stats_dicts.append(chunk_stats_dict)

            self.checkpoint_manager.append_stats(all_stats_dicts)

        logger.info("Writing the checkpoint")
        self.checkpoint_manager.write_new_version(
            config, self.entity_counts, self.embedding_storage_freelist
        )

        dist_logger.info(
            "Waiting for other workers to write their parts of the checkpoint"
        )
        self._barrier()
        dist_logger.info("All parts of the checkpoint have been written")

        logger.info("Switching to the new checkpoint version")
        self.checkpoint_manager.switch_to_new_version()

        dist_logger.info(
            "Waiting for other workers to switch to the new checkpoint version"
        )
        self._barrier()
        dist_logger.info("All workers have switched to the new checkpoint version")

        # After all the machines have finished committing
        # checkpoints, we either remove the old checkpoints
        # or we preserve it
        if preserve_new_checkpoint:
            # Add 1 so the index is a multiple of the interval, it looks nicer.
            self.checkpoint_manager.preserve_current_version(config, epoch_idx + 1)
        if not preserve_old_checkpoint:
            self.checkpoint_manager.remove_old_version(config)
示例#3
0
def do_eval_and_report_stats(
    config: ConfigSchema,
    model: Optional[MultiRelationEmbedder] = None,
    evaluator: Optional[AbstractBatchProcessor] = None,
    subprocess_init: Optional[Callable[[], None]] = None,
) -> Generator[Tuple[Optional[int], Optional[Bucket], Stats], None, None]:
    """Computes eval metrics (mr/mrr/r1/r10/r50) for a checkpoint with trained
       embeddings.
    """
    tag_logs_with_process_name(f"Evaluator")

    if evaluator is None:
        evaluator = RankingEvaluator(
            loss_fn=LOSS_FUNCTIONS.get_class(
                config.loss_fn)(margin=config.margin),
            relation_weights=[
                relation.weight for relation in config.relations
            ],
        )

    if config.verbose > 0:
        import pprint

        pprint.PrettyPrinter().pprint(config.to_dict())

    checkpoint_manager = CheckpointManager(config.checkpoint_path)

    def load_embeddings(entity: EntityName,
                        part: Partition) -> torch.nn.Parameter:
        embs, _ = checkpoint_manager.read(entity, part)
        assert embs.is_shared()
        return torch.nn.Parameter(embs)

    holder = EmbeddingHolder(config)

    num_workers = get_num_workers(config.workers)
    pool = create_pool(num_workers,
                       subprocess_name="EvalWorker",
                       subprocess_init=subprocess_init)

    if model is None:
        model = make_model(config)
    model.share_memory()

    state_dict, _ = checkpoint_manager.maybe_read_model()
    if state_dict is not None:
        model.load_state_dict(state_dict, strict=False)

    model.eval()

    for entity in holder.lhs_unpartitioned_types | holder.rhs_unpartitioned_types:
        embs = load_embeddings(entity, UNPARTITIONED)
        holder.unpartitioned_embeddings[entity] = embs

    all_stats: List[Stats] = []
    for edge_path_idx, edge_path in enumerate(config.edge_paths):
        logger.info(
            f"Starting edge path {edge_path_idx + 1} / {len(config.edge_paths)} "
            f"({edge_path})")
        edge_storage = EDGE_STORAGES.make_instance(edge_path)

        all_edge_path_stats = []
        # FIXME This order assumes higher affinity on the left-hand side, as it's
        # the one changing more slowly. Make this adaptive to the actual affinity.
        for bucket in create_buckets_ordered_lexicographically(
                holder.nparts_lhs, holder.nparts_rhs):
            tic = time.perf_counter()
            # logger.info(f"{bucket}: Loading entities")

            old_parts = set(holder.partitioned_embeddings.keys())
            new_parts = {(e, bucket.lhs)
                         for e in holder.lhs_partitioned_types
                         } | {(e, bucket.rhs)
                              for e in holder.rhs_partitioned_types}
            for entity, part in old_parts - new_parts:
                del holder.partitioned_embeddings[entity, part]
            for entity, part in new_parts - old_parts:
                embs = load_embeddings(entity, part)
                holder.partitioned_embeddings[entity, part] = embs

            model.set_all_embeddings(holder, bucket)

            # logger.info(f"{bucket}: Loading edges")
            edges = edge_storage.load_edges(bucket.lhs, bucket.rhs)
            num_edges = len(edges)

            load_time = time.perf_counter() - tic
            tic = time.perf_counter()
            # logger.info(f"{bucket}: Launching and waiting for workers")
            future_all_bucket_stats = pool.map_async(
                call,
                [
                    partial(
                        process_in_batches,
                        batch_size=config.batch_size,
                        model=model,
                        batch_processor=evaluator,
                        edges=edges[s],
                    ) for s in split_almost_equally(num_edges,
                                                    num_parts=num_workers)
                ],
            )
            all_bucket_stats = get_async_result(future_all_bucket_stats, pool)

            compute_time = time.perf_counter() - tic
            logger.info(
                f"{bucket}: Processed {num_edges} edges in {compute_time:.2g} s "
                f"({num_edges / compute_time / 1e6:.2g}M/sec); "
                f"load time: {load_time:.2g} s")

            total_bucket_stats = Stats.sum(all_bucket_stats)
            all_edge_path_stats.append(total_bucket_stats)
            mean_bucket_stats = total_bucket_stats.average()
            logger.info(
                f"Stats for edge path {edge_path_idx + 1} / {len(config.edge_paths)}, "
                f"bucket {bucket}: {mean_bucket_stats}")

            model.clear_all_embeddings()

            yield edge_path_idx, bucket, mean_bucket_stats

        total_edge_path_stats = Stats.sum(all_edge_path_stats)
        all_stats.append(total_edge_path_stats)
        mean_edge_path_stats = total_edge_path_stats.average()
        logger.info("")
        logger.info(
            f"Stats for edge path {edge_path_idx + 1} / {len(config.edge_paths)}: "
            f"{mean_edge_path_stats}")
        logger.info("")

        yield edge_path_idx, None, mean_edge_path_stats

    mean_stats = Stats.sum(all_stats).average()
    logger.info("")
    logger.info(f"Stats: {mean_stats}")
    logger.info("")

    yield None, None, mean_stats

    pool.close()
    pool.join()
示例#4
0
def train_and_report_stats(
    config: ConfigSchema,
    model: Optional[MultiRelationEmbedder] = None,
    trainer: Optional[AbstractBatchProcessor] = None,
    evaluator: Optional[AbstractBatchProcessor] = None,
    rank: Rank = RANK_ZERO,
    subprocess_init: Optional[Callable[[], None]] = None,
) -> Generator[Tuple[int, Optional[Stats], Stats, Optional[Stats]], None,
               None]:
    """Each epoch/pass, for each partition pair, loads in embeddings and edgelist
    from disk, runs HOGWILD training on them, and writes partitions back to disk.
    """
    tag_logs_with_process_name(f"Trainer-{rank}")

    if config.verbose > 0:
        import pprint
        pprint.PrettyPrinter().pprint(config.to_dict())

    logger.info("Loading entity counts...")
    entity_storage = ENTITY_STORAGES.make_instance(config.entity_path)
    entity_counts: Dict[str, List[int]] = {}
    for entity, econf in config.entities.items():
        entity_counts[entity] = []
        for part in range(econf.num_partitions):
            entity_counts[entity].append(
                entity_storage.load_count(entity, part))

    # Figure out how many lhs and rhs partitions we need
    nparts_lhs, lhs_partitioned_types = get_partitioned_types(config, Side.LHS)
    nparts_rhs, rhs_partitioned_types = get_partitioned_types(config, Side.RHS)
    logger.debug(f"nparts {nparts_lhs} {nparts_rhs} "
                 f"types {lhs_partitioned_types} {rhs_partitioned_types}")
    total_buckets = nparts_lhs * nparts_rhs

    sync: AbstractSynchronizer
    bucket_scheduler: AbstractBucketScheduler
    parameter_sharer: Optional[ParameterSharer]
    partition_client: Optional[PartitionClient]
    if config.num_machines > 1:
        if not 0 <= rank < config.num_machines:
            raise RuntimeError("Invalid rank for trainer")
        if not td.is_available():
            raise RuntimeError("The installed PyTorch version doesn't provide "
                               "distributed training capabilities.")
        ranks = ProcessRanks.from_num_invocations(config.num_machines,
                                                  config.num_partition_servers)

        if rank == RANK_ZERO:
            logger.info("Setup lock server...")
            start_server(
                LockServer(
                    num_clients=len(ranks.trainers),
                    nparts_lhs=nparts_lhs,
                    nparts_rhs=nparts_rhs,
                    lock_lhs=len(lhs_partitioned_types) > 0,
                    lock_rhs=len(rhs_partitioned_types) > 0,
                    init_tree=config.distributed_tree_init_order,
                ),
                process_name="LockServer",
                init_method=config.distributed_init_method,
                world_size=ranks.world_size,
                server_rank=ranks.lock_server,
                groups=[ranks.trainers],
                subprocess_init=subprocess_init,
            )

        bucket_scheduler = DistributedBucketScheduler(
            server_rank=ranks.lock_server,
            client_rank=ranks.trainers[rank],
        )

        logger.info("Setup param server...")
        start_server(
            ParameterServer(num_clients=len(ranks.trainers)),
            process_name=f"ParamS-{rank}",
            init_method=config.distributed_init_method,
            world_size=ranks.world_size,
            server_rank=ranks.parameter_servers[rank],
            groups=[ranks.trainers],
            subprocess_init=subprocess_init,
        )

        parameter_sharer = ParameterSharer(
            process_name=f"ParamC-{rank}",
            client_rank=ranks.parameter_clients[rank],
            all_server_ranks=ranks.parameter_servers,
            init_method=config.distributed_init_method,
            world_size=ranks.world_size,
            groups=[ranks.trainers],
            subprocess_init=subprocess_init,
        )

        if config.num_partition_servers == -1:
            start_server(
                ParameterServer(num_clients=len(ranks.trainers),
                                log_stats=True),
                process_name=f"PartS-{rank}",
                init_method=config.distributed_init_method,
                world_size=ranks.world_size,
                server_rank=ranks.partition_servers[rank],
                groups=[ranks.trainers],
                subprocess_init=subprocess_init,
            )

        if len(ranks.partition_servers) > 0:
            partition_client = PartitionClient(ranks.partition_servers,
                                               log_stats=True)
        else:
            partition_client = None

        groups = init_process_group(
            rank=ranks.trainers[rank],
            world_size=ranks.world_size,
            init_method=config.distributed_init_method,
            groups=[ranks.trainers],
        )
        trainer_group, = groups
        sync = DistributedSynchronizer(trainer_group)

    else:
        sync = DummySynchronizer()
        bucket_scheduler = SingleMachineBucketScheduler(
            nparts_lhs, nparts_rhs, config.bucket_order)
        parameter_sharer = None
        partition_client = None
        hide_distributed_logging()

    # fork early for HOGWILD threads
    logger.info("Creating workers...")
    num_workers = get_num_workers(config.workers)
    pool = create_pool(
        num_workers,
        subprocess_name=f"TWorker-{rank}",
        subprocess_init=subprocess_init,
    )

    def make_optimizer(params: Iterable[torch.nn.Parameter],
                       is_emb: bool) -> Optimizer:
        params = list(params)
        if len(params) == 0:
            optimizer = DummyOptimizer()
        elif is_emb:
            optimizer = RowAdagrad(params, lr=config.lr)
        else:
            if config.relation_lr is not None:
                lr = config.relation_lr
            else:
                lr = config.lr
            optimizer = Adagrad(params, lr=lr)
        optimizer.share_memory()
        return optimizer

    # background_io is only supported in single-machine mode
    background_io = config.background_io and config.num_machines == 1

    checkpoint_manager = CheckpointManager(
        config.checkpoint_path,
        background=background_io,
        rank=rank,
        num_machines=config.num_machines,
        partition_client=partition_client,
        subprocess_name=f"BackgRW-{rank}",
        subprocess_init=subprocess_init,
    )
    checkpoint_manager.register_metadata_provider(
        ConfigMetadataProvider(config))
    checkpoint_manager.write_config(config)

    if config.num_edge_chunks is not None:
        num_edge_chunks = config.num_edge_chunks
    else:
        num_edge_chunks = get_num_edge_chunks(config.edge_paths, nparts_lhs,
                                              nparts_rhs,
                                              config.max_edges_per_chunk)
    iteration_manager = IterationManager(
        config.num_epochs,
        config.edge_paths,
        num_edge_chunks,
        iteration_idx=checkpoint_manager.checkpoint_version)
    checkpoint_manager.register_metadata_provider(iteration_manager)

    if config.init_path is not None:
        loadpath_manager = CheckpointManager(config.init_path)
    else:
        loadpath_manager = None

    def load_embeddings(
        entity: EntityName,
        part: Partition,
        strict: bool = False,
        force_dirty: bool = False,
    ) -> Tuple[torch.nn.Parameter, Optional[OptimizerStateDict]]:
        if strict:
            embs, optim_state = checkpoint_manager.read(
                entity, part, force_dirty=force_dirty)
        else:
            # Strict is only false during the first iteration, because in that
            # case the checkpoint may not contain any data (unless a previous
            # run was resumed) so we fall back on initial values.
            embs, optim_state = checkpoint_manager.maybe_read(
                entity, part, force_dirty=force_dirty)
            if embs is None and loadpath_manager is not None:
                embs, optim_state = loadpath_manager.maybe_read(entity, part)
            if embs is None:
                embs, optim_state = init_embs(entity,
                                              entity_counts[entity][part],
                                              config.dimension,
                                              config.init_scale)
        assert embs.is_shared()
        return torch.nn.Parameter(embs), optim_state

    logger.info("Initializing global model...")

    if model is None:
        model = make_model(config)
    model.share_memory()
    if trainer is None:
        trainer = Trainer(
            global_optimizer=make_optimizer(model.parameters(), False),
            loss_fn=config.loss_fn,
            margin=config.margin,
            relations=config.relations,
        )
    if evaluator is None:
        evaluator = TrainingRankingEvaluator(
            override_num_batch_negs=config.eval_num_batch_negs,
            override_num_uniform_negs=config.eval_num_uniform_negs,
        )
    eval_batch_size = round_up_to_nearest_multiple(config.batch_size,
                                                   config.eval_num_batch_negs)

    state_dict, optim_state = checkpoint_manager.maybe_read_model()

    if state_dict is None and loadpath_manager is not None:
        state_dict, optim_state = loadpath_manager.maybe_read_model()
    if state_dict is not None:
        model.load_state_dict(state_dict, strict=False)
    if optim_state is not None:
        trainer.global_optimizer.load_state_dict(optim_state)

    logger.debug("Loading unpartitioned entities...")
    for entity, econfig in config.entities.items():
        if econfig.num_partitions == 1:
            embs, optim_state = load_embeddings(entity, Partition(0))
            model.set_embeddings(entity, embs, Side.LHS)
            model.set_embeddings(entity, embs, Side.RHS)
            optimizer = make_optimizer([embs], True)
            if optim_state is not None:
                optimizer.load_state_dict(optim_state)
            trainer.entity_optimizers[(entity, Partition(0))] = optimizer

    # start communicating shared parameters with the parameter server
    if parameter_sharer is not None:
        parameter_sharer.share_model_params(model)

    strict = False

    def swap_partitioned_embeddings(
        old_b: Optional[Bucket],
        new_b: Optional[Bucket],
    ):
        # 0. given the old and new buckets, construct data structures to keep
        #    track of old and new embedding (entity, part) tuples

        io_bytes = 0
        logger.info(f"Swapping partitioned embeddings {old_b} {new_b}")

        types = ([(e, Side.LHS) for e in lhs_partitioned_types] +
                 [(e, Side.RHS) for e in rhs_partitioned_types])
        old_parts = {(e, old_b.get_partition(side)): side
                     for e, side in types if old_b is not None}
        new_parts = {(e, new_b.get_partition(side)): side
                     for e, side in types if new_b is not None}

        to_checkpoint = set(old_parts) - set(new_parts)
        preserved = set(old_parts) & set(new_parts)

        # 1. checkpoint embeddings that will not be used in the next pair
        #
        if old_b is not None:  # there are previous embeddings to checkpoint
            logger.info("Writing partitioned embeddings")
            for entity, part in to_checkpoint:
                side = old_parts[(entity, part)]
                side_name = side.pick("lhs", "rhs")
                logger.debug(f"Checkpointing ({entity} {part} {side_name})")
                embs = model.get_embeddings(entity, side)
                optim_key = (entity, part)
                optim_state = OptimizerStateDict(
                    trainer.entity_optimizers[optim_key].state_dict())
                io_bytes += embs.numel() * embs.element_size(
                )  # ignore optim state
                checkpoint_manager.write(entity, part, embs.detach(),
                                         optim_state)
                if optim_key in trainer.entity_optimizers:
                    del trainer.entity_optimizers[optim_key]
                # these variables are holding large objects; let them be freed
                del embs
                del optim_state

            bucket_scheduler.release_bucket(old_b)

        # 2. copy old embeddings that will be used in the next pair
        #    into a temporary dictionary
        #
        tmp_emb = {
            x: model.get_embeddings(x[0], old_parts[x])
            for x in preserved
        }

        for entity, _ in types:
            model.clear_embeddings(entity, Side.LHS)
            model.clear_embeddings(entity, Side.RHS)

        if new_b is None:  # there are no new embeddings to load
            return io_bytes

        bucket_logger = BucketLogger(logger, bucket=new_b)

        # 3. load new embeddings into the model/optimizer, either from disk
        #    or the temporary dictionary
        #
        bucket_logger.info("Loading entities")
        for entity, side in types:
            part = new_b.get_partition(side)
            part_key = (entity, part)
            if part_key in tmp_emb:
                bucket_logger.debug(
                    f"Loading ({entity}, {part}) from preserved")
                embs, optim_state = tmp_emb[part_key], None
            else:
                bucket_logger.debug(f"Loading ({entity}, {part})")

                force_dirty = bucket_scheduler.check_and_set_dirty(
                    entity, part)
                embs, optim_state = load_embeddings(entity,
                                                    part,
                                                    strict=strict,
                                                    force_dirty=force_dirty)
                io_bytes += embs.numel() * embs.element_size(
                )  # ignore optim state

            model.set_embeddings(entity, embs, side)
            tmp_emb[part_key] = embs

            optim_key = (entity, part)
            if optim_key not in trainer.entity_optimizers:
                bucket_logger.debug(f"Resetting optimizer {optim_key}")
                optimizer = make_optimizer([embs], True)
                if optim_state is not None:
                    bucket_logger.debug("Setting optim state")
                    optimizer.load_state_dict(optim_state)

                trainer.entity_optimizers[optim_key] = optimizer

        return io_bytes

    if rank == RANK_ZERO:
        for stats_dict in checkpoint_manager.maybe_read_stats():
            index: int = stats_dict["index"]
            stats: Stats = Stats.from_dict(stats_dict["stats"])
            eval_stats_before: Optional[Stats] = None
            if "eval_stats_before" in stats_dict:
                eval_stats_before = Stats.from_dict(
                    stats_dict["eval_stats_before"])
            eval_stats_after: Optional[Stats] = None
            if "eval_stats_after" in stats_dict:
                eval_stats_after = Stats.from_dict(
                    stats_dict["eval_stats_after"])
            yield (index, eval_stats_before, stats, eval_stats_after)

    # Start of the main training loop.
    for epoch_idx, edge_path_idx, edge_chunk_idx in iteration_manager:
        logger.info(
            f"Starting epoch {epoch_idx + 1} / {iteration_manager.num_epochs}, "
            f"edge path {edge_path_idx + 1} / {iteration_manager.num_edge_paths}, "
            f"edge chunk {edge_chunk_idx + 1} / {iteration_manager.num_edge_chunks}"
        )
        edge_storage = EDGE_STORAGES.make_instance(iteration_manager.edge_path)
        logger.info(f"Edge path: {iteration_manager.edge_path}")

        sync.barrier()
        dist_logger.info("Lock client new epoch...")
        bucket_scheduler.new_pass(
            is_first=iteration_manager.iteration_idx == 0)
        sync.barrier()

        remaining = total_buckets
        cur_b = None
        while remaining > 0:
            old_b = cur_b
            io_time = 0.
            io_bytes = 0
            cur_b, remaining = bucket_scheduler.acquire_bucket()
            logger.info(f"still in queue: {remaining}")
            if cur_b is None:
                if old_b is not None:
                    # if you couldn't get a new pair, release the lock
                    # to prevent a deadlock!
                    tic = time.time()
                    io_bytes += swap_partitioned_embeddings(old_b, None)
                    io_time += time.time() - tic
                time.sleep(1)  # don't hammer td
                continue

            bucket_logger = BucketLogger(logger, bucket=cur_b)

            tic = time.time()

            io_bytes += swap_partitioned_embeddings(old_b, cur_b)

            current_index = \
                (iteration_manager.iteration_idx + 1) * total_buckets - remaining

            next_b = bucket_scheduler.peek()
            if next_b is not None and background_io:
                # Ensure the previous bucket finished writing to disk.
                checkpoint_manager.wait_for_marker(current_index - 1)

                bucket_logger.debug("Prefetching")
                for entity in lhs_partitioned_types:
                    checkpoint_manager.prefetch(entity, next_b.lhs)
                for entity in rhs_partitioned_types:
                    checkpoint_manager.prefetch(entity, next_b.rhs)

                checkpoint_manager.record_marker(current_index)

            bucket_logger.debug("Loading edges")
            edges = edge_storage.load_chunk_of_edges(
                cur_b.lhs, cur_b.rhs, edge_chunk_idx,
                iteration_manager.num_edge_chunks)
            num_edges = len(edges)
            # this might be off in the case of tensorlist or extra edge fields
            io_bytes += edges.lhs.tensor.numel(
            ) * edges.lhs.tensor.element_size()
            io_bytes += edges.rhs.tensor.numel(
            ) * edges.rhs.tensor.element_size()
            io_bytes += edges.rel.numel() * edges.rel.element_size()

            bucket_logger.debug("Shuffling edges")
            # Fix a seed to get the same permutation every time; have it
            # depend on all and only what affects the set of edges.
            g = torch.Generator()
            g.manual_seed(
                hash((edge_path_idx, edge_chunk_idx, cur_b.lhs, cur_b.rhs)))

            num_eval_edges = int(num_edges * config.eval_fraction)
            if num_eval_edges > 0:
                edge_perm = torch.randperm(num_edges, generator=g)
                eval_edge_perm = edge_perm[-num_eval_edges:]
                num_edges -= num_eval_edges
                edge_perm = edge_perm[torch.randperm(num_edges)]
            else:
                edge_perm = torch.randperm(num_edges)

            # HOGWILD evaluation before training
            eval_stats_before: Optional[Stats] = None
            if num_eval_edges > 0:
                bucket_logger.debug(
                    "Waiting for workers to perform evaluation")
                future_all_eval_stats_before = pool.map_async(
                    call, [
                        partial(
                            process_in_batches,
                            batch_size=eval_batch_size,
                            model=model,
                            batch_processor=evaluator,
                            edges=edges,
                            indices=eval_edge_perm[s],
                        ) for s in split_almost_equally(eval_edge_perm.size(0),
                                                        num_parts=num_workers)
                    ])
                all_eval_stats_before = \
                    get_async_result(future_all_eval_stats_before, pool)
                eval_stats_before = Stats.sum(all_eval_stats_before).average()
                bucket_logger.info(
                    f"Stats before training: {eval_stats_before}")

            io_time += time.time() - tic
            tic = time.time()
            # HOGWILD training
            bucket_logger.debug("Waiting for workers to perform training")
            # FIXME should we only delay if iteration_idx == 0?
            future_all_stats = pool.map_async(call, [
                partial(
                    process_in_batches,
                    batch_size=config.batch_size,
                    model=model,
                    batch_processor=trainer,
                    edges=edges,
                    indices=edge_perm[s],
                    delay=config.hogwild_delay
                    if epoch_idx == 0 and rank > 0 else 0,
                ) for rank, s in enumerate(
                    split_almost_equally(edge_perm.size(0),
                                         num_parts=num_workers))
            ])
            all_stats = get_async_result(future_all_stats, pool)
            stats = Stats.sum(all_stats).average()
            compute_time = time.time() - tic

            bucket_logger.info(
                f"bucket {total_buckets - remaining} / {total_buckets} : "
                f"Processed {num_edges} edges in {compute_time:.2f} s "
                f"( {num_edges / compute_time / 1e6:.2g} M/sec ); "
                f"io: {io_time:.2f} s ( {io_bytes / io_time / 1e6:.2f} MB/sec )"
            )
            bucket_logger.info(f"{stats}")

            # HOGWILD eval after training
            eval_stats_after: Optional[Stats] = None
            if num_eval_edges > 0:
                bucket_logger.debug(
                    "Waiting for workers to perform evaluation")
                future_all_eval_stats_after = pool.map_async(
                    call, [
                        partial(
                            process_in_batches,
                            batch_size=eval_batch_size,
                            model=model,
                            batch_processor=evaluator,
                            edges=edges,
                            indices=eval_edge_perm[s],
                        ) for s in split_almost_equally(eval_edge_perm.size(0),
                                                        num_parts=num_workers)
                    ])
                all_eval_stats_after = \
                    get_async_result(future_all_eval_stats_after, pool)
                eval_stats_after = Stats.sum(all_eval_stats_after).average()
                bucket_logger.info(f"Stats after training: {eval_stats_after}")

            # Add train/eval metrics to queue
            stats_dict = {
                "index": current_index,
                "stats": stats.to_dict(),
            }
            if eval_stats_before is not None:
                stats_dict["eval_stats_before"] = eval_stats_before.to_dict()
            if eval_stats_after is not None:
                stats_dict["eval_stats_after"] = eval_stats_after.to_dict()
            checkpoint_manager.append_stats(stats_dict)
            yield current_index, eval_stats_before, stats, eval_stats_after

        swap_partitioned_embeddings(cur_b, None)

        # Distributed Processing: all machines can leave the barrier now.
        sync.barrier()

        # Preserving a checkpoint requires two steps:
        # - create a snapshot (w/ symlinks) after it's first written;
        # - don't delete it once the following one is written.
        # These two happen in two successive iterations of the main loop: the
        # one just before and the one just after the epoch boundary.
        preserve_old_checkpoint = should_preserve_old_checkpoint(
            iteration_manager, config.checkpoint_preservation_interval)
        preserve_new_checkpoint = should_preserve_old_checkpoint(
            iteration_manager + 1, config.checkpoint_preservation_interval)

        # Write metadata: for multiple machines, write from rank-0
        logger.info(
            f"Finished epoch {epoch_idx + 1} / {iteration_manager.num_epochs}, "
            f"edge path {edge_path_idx + 1} / {iteration_manager.num_edge_paths}, "
            f"edge chunk {edge_chunk_idx + 1} / {iteration_manager.num_edge_chunks}"
        )
        if rank == 0:
            for entity, econfig in config.entities.items():
                if econfig.num_partitions == 1:
                    embs = model.get_embeddings(entity, Side.LHS)
                    optimizer = trainer.entity_optimizers[(entity,
                                                           Partition(0))]

                    checkpoint_manager.write(
                        entity, Partition(0), embs.detach(),
                        OptimizerStateDict(optimizer.state_dict()))

            sanitized_state_dict: ModuleStateDict = {}
            for k, v in ModuleStateDict(model.state_dict()).items():
                if k.startswith('lhs_embs') or k.startswith('rhs_embs'):
                    # skipping state that's an entity embedding
                    continue
                sanitized_state_dict[k] = v

            logger.info("Writing the metadata")
            checkpoint_manager.write_model(
                sanitized_state_dict,
                OptimizerStateDict(trainer.global_optimizer.state_dict()),
            )

        logger.info("Writing the checkpoint")
        checkpoint_manager.write_new_version(config)

        dist_logger.info(
            "Waiting for other workers to write their parts of the checkpoint")
        sync.barrier()
        dist_logger.info("All parts of the checkpoint have been written")

        logger.info("Switching to the new checkpoint version")
        checkpoint_manager.switch_to_new_version()

        dist_logger.info(
            "Waiting for other workers to switch to the new checkpoint version"
        )
        sync.barrier()
        dist_logger.info(
            "All workers have switched to the new checkpoint version")

        # After all the machines have finished committing
        # checkpoints, we either remove the old checkpoints
        # or we preserve it
        if preserve_new_checkpoint:
            # Add 1 so the index is a multiple of the interval, it looks nicer.
            checkpoint_manager.preserve_current_version(config, epoch_idx + 1)
        if not preserve_old_checkpoint:
            checkpoint_manager.remove_old_version(config)

        # now we're sure that all partition files exist,
        # so be strict about loading them
        strict = True

    # quiescence
    pool.close()
    pool.join()

    sync.barrier()

    checkpoint_manager.close()
    if loadpath_manager is not None:
        loadpath_manager.close()

    # FIXME join distributed workers (not really necessary)

    logger.info("Exiting")
示例#5
0
文件: eval.py 项目: delldu/BigGraph
def do_eval_and_report_stats(
    config: ConfigSchema,
    model: Optional[MultiRelationEmbedder] = None,
    evaluator: Optional[AbstractBatchProcessor] = None,
    subprocess_init: Optional[Callable[[], None]] = None,
) -> Generator[Tuple[Optional[int], Optional[Bucket], Stats], None, None]:
    """Computes eval metrics (mr/mrr/r1/r10/r50) for a checkpoint with trained
       embeddings.
    """
    tag_logs_with_process_name(f"Evaluator")

    if evaluator is None:
        evaluator = RankingEvaluator()

    if config.verbose > 0:
        import pprint
        pprint.PrettyPrinter().pprint(config.to_dict())

    checkpoint_manager = CheckpointManager(config.checkpoint_path)

    def load_embeddings(entity: EntityName,
                        part: Partition) -> torch.nn.Parameter:
        embs, _ = checkpoint_manager.read(entity, part)
        assert embs.is_shared()
        return torch.nn.Parameter(embs)

    nparts_lhs, lhs_partitioned_types = get_partitioned_types(config, Side.LHS)
    nparts_rhs, rhs_partitioned_types = get_partitioned_types(config, Side.RHS)

    num_workers = get_num_workers(config.workers)
    pool = create_pool(
        num_workers,
        subprocess_name="EvalWorker",
        subprocess_init=subprocess_init,
    )

    if model is None:
        model = make_model(config)
    model.share_memory()

    state_dict, _ = checkpoint_manager.maybe_read_model()
    if state_dict is not None:
        model.load_state_dict(state_dict, strict=False)

    model.eval()

    for entity, econfig in config.entities.items():
        if econfig.num_partitions == 1:
            embs = load_embeddings(entity, Partition(0))
            model.set_embeddings(entity, embs, Side.LHS)
            model.set_embeddings(entity, embs, Side.RHS)

    all_stats: List[Stats] = []
    for edge_path_idx, edge_path in enumerate(config.edge_paths):
        logger.info(
            f"Starting edge path {edge_path_idx + 1} / {len(config.edge_paths)} "
            f"({edge_path})")
        edge_storage = EDGE_STORAGES.make_instance(edge_path)

        all_edge_path_stats = []
        last_lhs, last_rhs = None, None
        for bucket in create_buckets_ordered_lexicographically(
                nparts_lhs, nparts_rhs):
            tic = time.time()
            # logger.info(f"{bucket}: Loading entities")

            if last_lhs != bucket.lhs:
                for e in lhs_partitioned_types:
                    model.clear_embeddings(e, Side.LHS)
                    embs = load_embeddings(e, bucket.lhs)
                    model.set_embeddings(e, embs, Side.LHS)
            if last_rhs != bucket.rhs:
                for e in rhs_partitioned_types:
                    model.clear_embeddings(e, Side.RHS)
                    embs = load_embeddings(e, bucket.rhs)
                    model.set_embeddings(e, embs, Side.RHS)
            last_lhs, last_rhs = bucket.lhs, bucket.rhs

            # logger.info(f"{bucket}: Loading edges")
            edges = edge_storage.load_edges(bucket.lhs, bucket.rhs)
            num_edges = len(edges)

            load_time = time.time() - tic
            tic = time.time()
            # logger.info(f"{bucket}: Launching and waiting for workers")
            future_all_bucket_stats = pool.map_async(call, [
                partial(
                    process_in_batches,
                    batch_size=config.batch_size,
                    model=model,
                    batch_processor=evaluator,
                    edges=edges[s],
                )
                for s in split_almost_equally(num_edges, num_parts=num_workers)
            ])
            all_bucket_stats = \
                get_async_result(future_all_bucket_stats, pool)

            compute_time = time.time() - tic
            logger.info(
                f"{bucket}: Processed {num_edges} edges in {compute_time:.2g} s "
                f"({num_edges / compute_time / 1e6:.2g}M/sec); "
                f"load time: {load_time:.2g} s")

            total_bucket_stats = Stats.sum(all_bucket_stats)
            all_edge_path_stats.append(total_bucket_stats)
            mean_bucket_stats = total_bucket_stats.average()
            logger.info(
                f"Stats for edge path {edge_path_idx + 1} / {len(config.edge_paths)}, "
                f"bucket {bucket}: {mean_bucket_stats}")

            yield edge_path_idx, bucket, mean_bucket_stats

        total_edge_path_stats = Stats.sum(all_edge_path_stats)
        all_stats.append(total_edge_path_stats)
        mean_edge_path_stats = total_edge_path_stats.average()
        logger.info("")
        logger.info(
            f"Stats for edge path {edge_path_idx + 1} / {len(config.edge_paths)}: "
            f"{mean_edge_path_stats}")
        logger.info("")

        yield edge_path_idx, None, mean_edge_path_stats

    mean_stats = Stats.sum(all_stats).average()
    logger.info("")
    logger.info(f"Stats: {mean_stats}")
    logger.info("")

    yield None, None, mean_stats

    pool.close()
    pool.join()