示例#1
0
    def test_LinkPredictionEvaluator(self):
        model = TransEModel(100, self.kg.n_ent, self.kg.n_rel, 'L1')

        evaluator = LinkPredictionEvaluator(model, self.kg)
        self.checkSanityLinkPrediction(evaluator)

        evaluator.evaluate(b_size=len(self.kg), k_max=10)
        self.checkSanityLinkPrediction(evaluator)
示例#2
0
def test_eval(benchmarks,
              model_name,
              opt_method,
              GDR=False,
              emb_dim=100,
              eval_b_size=256):

    ent_dim = emb_dim
    rel_dim = emb_dim

    model_save_path = './checkpoint/' + benchmarks + '_' + model_name + '_' + opt_method + '.ckpt'  # 保存最佳hits k (ent)模型
    device = 'cuda:0' if cuda.is_available() else 'cpu'

    # Load dataset
    module = getattr(import_module('torchkge.models'), model_name + 'Model')
    load_data = getattr(import_module('torchkge.utils.datasets'),
                        'load_' + benchmarks)

    print('Loading data...')
    kg_train, kg_val, kg_test = load_data(GDR=GDR)
    print(
        f'Train set: {kg_train.n_ent} entities, {kg_train.n_rel} relations, {kg_train.n_facts} triplets.'
    )
    print(
        f'Valid set: {kg_val.n_facts} triplets, Test set: {kg_test.n_facts} triplets.'
    )

    # # Define the model and criterion
    if 'TransE' in model_name:
        model = module(emb_dim,
                       kg_train.n_ent,
                       kg_train.n_rel,
                       dissimilarity_type='L2')
    else:
        model = module(ent_dim, rel_dim, kg_train.n_ent, kg_train.n_rel)
    # Move everything to CUDA if available
    if device == 'cuda:0':
        cuda.empty_cache()
        model.to(device)

    if os.path.exists(model_save_path):  # 存在则加载模型 进行测试
        load_ckpt(model_save_path, model, train=False)
        print(f'loading ckpt successful, start evaluate on test data...')
        print(model)
        model.eval()
        lp_evaluator = LinkPredictionEvaluator(model, kg_test)
        lp_evaluator.evaluate(eval_b_size, verbose=True)
        lp_evaluator.print_results()
        rp_evaluator = RelationPredictionEvaluator(model, kg_test)
        rp_evaluator.evaluate(eval_b_size, verbose=True)
        rp_evaluator.print_results()
    else:
        print('No pretrain model found!')
示例#3
0
def main():
    # Define some hyper-parameters for training
    emb_dim = 100
    lr = 0.001  #0.0004
    margin = 1
    n_epochs = 30  #10
    batch_size = 5000  #10000 #32768

    # Load dataset
    #kg_train, kg_val, kg_test = load_fb15k()
    #kinship_df = pd.read_csv('data/kinship.txt', delimiter='\t', header=None, names=['from', 'rel', 'to'])
    #kinship_kg = KnowledgeGraph(df=kinship_df)
    #kg_train, kg_test = kinship_kg.split_kg(share=0.9)

    data_name = 'FB15k-237'
    df1 = pd.read_csv('../data/%s/divided/train1.csv' % data_name,
                      delimiter='\t')
    #df1 = df1.rename(columns={'head': 'from', 'rel': 'rel', 'tail': 'to'})
    kg = KnowledgeGraph(df1)

    #kg_train, kg_test = kg.split_kg(share=0.85)
    kg_train, kg_test = kg.split_kg(size=(0.85, ))

    print('n_ent: ', kg_train.n_ent)
    print('n_rel: ', kg_train.n_rel)
    print('n_facts: train: %s, test: %s' % (kg_train.n_facts, kg_test.n_facts))
    #print('n_facts: total: %s, train: %s, test: %s' %(kinship_kg.n_facts, kg_train.n_facts, kg_test.n_facts))

    # Define the model and criterion
    #model = RESCALModel(emb_dim, kg_train.n_ent, kg_train.n_rel)
    #print('RESCALModel')
    model = Rescal(kg_train.n_ent, kg_train.n_rel, emb_dim)
    criterion = MarginLoss(margin)
    optimizer = Adam(model.parameters(), lr=lr, weight_decay=1e-5)

    trainer = Trainer(model,
                      criterion,
                      kg_train,
                      n_epochs,
                      batch_size,
                      optimizer=optimizer,
                      sampling_type='unif',
                      use_cuda=None)

    for _ in range(1):
        trainer.run()

        evaluator = LinkPredictionEvaluator(model, kg_test)
        evaluator.evaluate(200, 10)
        evaluator.print_results(k=[1, 3, 10])
示例#4
0
def val_eval(model, optimizer, model_save_path, epoch, save_time,
             save_time_freq, best_score, eval_b_size, last_improve):
    if (time.time() - save_time) / 60 > save_time_freq:
        create_dir_not_exists('./checkpoint')
        model.eval()
        evaluator = LinkPredictionEvaluator(model, kg_val)
        evaluator.evaluate(b_size=eval_b_size, verbose=False)
        _, hit_at_k = evaluator.hit_at_k(10)  # val filter hit_k
        if hit_at_k > best_score:
            save_ckpt(model, optimizer, epoch, best_score, model_save_path)
            best_score = hit_at_k
            improve = '*'  # 在有提升的结果后面加上*标注
            last_improve = time.time()  # 验证集hit_k增大即认为有提升
        else:
            improve = ''
        save_time = time.time()
        msg = ', Val Hit@10: {:>5.2%} {}'
        print(msg.format(hit_at_k, improve))
        return best_score, last_improve, save_time
示例#5
0
def main():
    # Define some hyper-parameters for training
    emb_dim = 100
    lr = 0.0004
    margin = 0.5
    n_epochs = 1000
    batch_size = 32768

    # Load dataset
    kg_train, kg_val, kg_test = load_fb15k()

    print(kg_train)

    # Define the model and criterion
    model = TransEModel(emb_dim,
                        kg_train.n_ent,
                        kg_train.n_rel,
                        dissimilarity_type="L2")
    criterion = MarginLoss(margin)
    optimizer = Adam(model.parameters(), lr=lr, weight_decay=1e-5)

    trainer = Trainer(
        model,
        criterion,
        kg_train,
        n_epochs,
        batch_size,
        optimizer=optimizer,
        sampling_type="bern",
        use_cuda=None,
    )

    trainer.run()

    evaluator = LinkPredictionEvaluator(model, kg_test)
    evaluator.evaluate(200, 10)
    evaluator.print_results()
def main():
    # Define some hyper-parameters for training
    global optimizer
    benchmarks = 'GeoDBpedia21'
    model_name = 'TransR_GDR'
    opt_method = 'Adam'  # "Adagrad" "Adadelta" "Adam" "SGD"
    GDR = True  # 是否引入坐标信息

    emb_dim = 100  # TransE model
    ent_dim = emb_dim
    rel_dim = emb_dim
    lr = 0.001
    margin = 0.5

    n_epochs = 20000
    train_b_size = 256  # 训练时batch size
    eval_b_size = 64  # 测评valid test 时batch size

    #     save_time_freq = 5
    #     require_improvement = save_time_freq*5

    validation_freq = 10  # 多少轮进行在验证集进行一次测试 同时保存最佳模型
    require_improvement = validation_freq * 3  # 验证集top_k超过多少epoch没下降,结束训练
    model_save_path = './checkpoint/' + benchmarks + '_' + model_name + '_' + opt_method + '.ckpt'  # 保存最佳hits k (ent)模型
    device = 'cuda:0' if cuda.is_available() else 'cpu'

    # Load dataset
    module = getattr(import_module('torchkge.models'), model_name + 'Model')
    load_data = getattr(import_module('torchkge.utils.datasets'), 'load_' + benchmarks)

    print('Loading data...')
    kg_train, kg_val, kg_test = load_data(GDR=GDR)
    print(f'Train set: {kg_train.n_ent} entities, {kg_train.n_rel} relations, {kg_train.n_facts} triplets.')
    print(f'Valid set: {kg_val.n_facts} triplets, Test set: {kg_test.n_facts} triplets.')

    # Define the model and criterion
    print('Loading model...')
    if 'TransE' in model_name:
        model = module(emb_dim, kg_train.n_ent, kg_train.n_rel, dissimilarity_type='L2')
    else:
        model = module(ent_dim, rel_dim, kg_train.n_ent, kg_train.n_rel)
    criterion = MarginLoss(margin)

    # Move everything to CUDA if available
    if device == 'cuda:0':
        cuda.empty_cache()
        model.to(device)
        criterion.to(device)
        dataloader = DataLoader(kg_train, batch_size=train_b_size, use_cuda='all')
    else:
        dataloader = DataLoader(kg_train, batch_size=train_b_size, use_cuda=None)

    # Define the torch optimizer to be used
    optimizer = optimizer(model, opt_method=opt_method, lr=lr)
    # optimizer = Adam(model.parameters(), lr=lr, weight_decay=1e-5)
    sampler = BernoulliNegativeSampler(kg_train)

    start_epoch = 1
    best_score = float('-inf')
    if os.path.exists(model_save_path):  # 存在则加载模型 并继续训练
        start_epoch, best_score = load_ckpt(model_save_path, model, optimizer)
        print(f'loading ckpt sucessful, start on epoch {start_epoch}...')
    print(model)
    print('lr: {}, margin: {}, dim {}, total epoch: {}, device: {}, batch size: {}, optim: {}, GDR: {}' \
          .format(lr, margin, emb_dim, n_epochs, device, train_b_size, opt_method, GDR))

    print('Training...')
    last_improve = start_epoch  # 记录上次验证集loss下降的epoch数
    start = time.time()
    #     last_improve = start
    #     save_time = start
    for epoch in range(start_epoch, n_epochs + 1):
        #         model.normalize_parameters()

        running_loss = 0.0
        model.train()
        for i, batch in enumerate(dataloader):
            if GDR:
                h, t, r, point = batch[0], batch[1], batch[2], batch[3]
                n_h, n_t = sampler.corrupt_batch(h, t, r)  # 1:1 negative sampling
                n_point = id2point(n_h, n_t, kg_train.id2point)
                optimizer.zero_grad()

                # forward + backward + optimize
                pos, neg = model(h, t, n_h, n_t, r)
                loss = criterion(pos, neg, point, n_point)
            else:
                h, t, r = batch[0], batch[1], batch[2]
                n_h, n_t = sampler.corrupt_batch(h, t, r)
                optimizer.zero_grad()
                pos, neg = model(h, t, n_h, n_t, r)
                loss = criterion(pos, neg)
            loss.backward()
            optimizer.step()

            running_loss += loss.item()
        model.normalize_parameters()
        #         print('\rEpoch [{:>4}/{:>4}] | mean loss: {:>8.3f}, time: {}'.format(epoch, n_epochs, running_loss / len(dataloader), time_since(start)), end='', flush=True)

        #         # test
        if epoch % validation_freq == 0:
            create_dir_not_exists('./checkpoint')
            model.eval()
            evaluator = LinkPredictionEvaluator(model, kg_val)
            evaluator.evaluate(b_size=eval_b_size, verbose=False)
            _, hit_at_k = evaluator.hit_at_k(10)  # val filter hit_k
            print('Epoch [{:>5}/{:>5}] '.format(epoch, n_epochs), end='')
            if hit_at_k > best_score:
                save_ckpt(model, optimizer, epoch, best_score, model_save_path)
                best_score = hit_at_k
                improve = '*'  # 在有提升的结果后面加上*标注
                last_improve = epoch  # 验证集hit_k增大即认为有提升
            else:
                improve = ''
            msg = '| Train loss: {:>8.3f}, Val Hit@10: {:>5.2%}, Time {} {}'
            print(msg.format(running_loss / len(dataloader), hit_at_k, time_since(start), improve))
        #         model.normalize_parameters()
        if epoch - last_improve > require_improvement:
            # 验证集top_k超过一定epoch没增加,结束训练
            print("\nNo optimization for a long time, auto-stopping...")
            break

    #         # test
    #         if (time.time() - save_time)/60 > save_time_freq:
    #             create_dir_not_exists('./checkpoint')
    #             model.eval()
    #             evaluator = LinkPredictionEvaluator(model, kg_val)
    #             evaluator.evaluate(b_size=eval_b_size, verbose=False)
    #             _, hit_at_k = evaluator.hit_at_k(10)  # val filter hit_k
    #             if hit_at_k > best_score:
    #                 save_ckpt(model, optimizer, epoch, best_score, model_save_path)
    #                 best_score = hit_at_k
    #                 improve = '*'  # 在有提升的结果后面加上*标注
    #                 last_improve = time.time()  # 验证集hit_k增大即认为有提升
    #             else:
    #                 improve = ''
    #             save_time = time.time()
    #             msg = ', Val Hit@10: {:>5.2%} {}'
    #             print(msg.format(hit_at_k, improve))
    #         model.normalize_parameters()
    #         if (time.time() - last_improve)/60 > require_improvement:
    #             # 验证集top_k超过一定epoch没增加,结束训练
    #             print("\nNo optimization for a long time, auto-stopping...")
    #             break

    print('\nTraining done, start evaluate on test data...')
    print('model name: {}, lr: {}, dim {}, device: {}, eval batch size: {}, optim: {}, GDR: {}' \
          .format(model_name, lr, emb_dim, device, eval_b_size, opt_method, GDR))
    # Testing the best checkpoint on test dataset
    load_ckpt(model_save_path, model, optimizer)
    model.eval()
    lp_evaluator = LinkPredictionEvaluator(model, kg_test)
    lp_evaluator.evaluate(eval_b_size, verbose=False)
    lp_evaluator.print_results()
    rp_evaluator = RelationPredictionEvaluator(model, kg_test)
    rp_evaluator.evaluate(eval_b_size, verbose=False)
    rp_evaluator.print_results()
    print(f'Total time cost: {time_since(start)}')
示例#7
0
        with torch.no_grad():
            pos, neg = model(h, t, n_h, n_t, r)
            loss = criterion(pos, neg)
            test_loss += loss.item()
    test_loss /= (step + 1)

    training_summary = previous_summary['Training Summary']
    training_summary['test loss'] = round(test_loss, 4)
    training_summary = dict(**training_summary)
    summary = {'Training Summary': training_summary}
    summary_manager.update(summary)

    # Link Prediction
    lp_evaluator = LinkPredictionEvaluator(model, kg_test)
    lp_summary = lp_evaluator.evaluate(verbose=False,
                                       b_size=args.batch_size,
                                       k=10)
    lp_summary = dict(**lp_summary)
    lp_summary = {'Link Prediction': lp_summary}
    summary_manager.update(lp_summary)

    # Triplet Classification
    tc_evaluator = TripletClassificationEvaluator(model, kg_valid, kg_test)
    tc_evaluator.evaluate(b_size=args.batch_size)
    tc_summary = {
        'Accuracy': round(tc_evaluator.accuracy(b_size=args.batch_size), 4)
    }
    tc_summary = dict(**tc_summary)
    tc_summary = {'Triplet Classification': tc_summary}
    summary_manager.update(tc_summary)
示例#8
0
    if sum(mul_ot_model.alphas.values()) != 0:
        print('compute sinkhorn distance between pairs of datasets')
        sinkhorn_cost = mul_ot_model.update_P()
    else:
        #print('compute each dataset independently: do not use sinkhorn')
        sinkhorn_cost = None

    epochs_iter.set_description(
        'Epoch %s | mean loss: %.5f | sinkhorn_cost: %s' % (epoch + 1, running_loss / total_batch, sinkhorn_cost)
    )


model1 = mul_ot_model.model_list[0]

evaluator = LinkPredictionEvaluator(model1, kg1_test)
evaluator.evaluate(200, 10)
evaluator.print_results(k=[1,3,10])


model2 = mul_ot_model.model_list[1]

evaluator = LinkPredictionEvaluator(model2, kg2_test)
evaluator.evaluate(200, 10)
evaluator.print_results(k=[1,3,10])

model3 = mul_ot_model.model_list[2]

evaluator = LinkPredictionEvaluator(model3, kg3_test)
evaluator.evaluate(200, 10)
evaluator.print_results(k=[1,3,10])