示例#1
0
def test_eval(benchmarks,
              model_name,
              opt_method,
              GDR=False,
              emb_dim=100,
              eval_b_size=256):

    ent_dim = emb_dim
    rel_dim = emb_dim

    model_save_path = './checkpoint/' + benchmarks + '_' + model_name + '_' + opt_method + '.ckpt'  # 保存最佳hits k (ent)模型
    device = 'cuda:0' if cuda.is_available() else 'cpu'

    # Load dataset
    module = getattr(import_module('torchkge.models'), model_name + 'Model')
    load_data = getattr(import_module('torchkge.utils.datasets'),
                        'load_' + benchmarks)

    print('Loading data...')
    kg_train, kg_val, kg_test = load_data(GDR=GDR)
    print(
        f'Train set: {kg_train.n_ent} entities, {kg_train.n_rel} relations, {kg_train.n_facts} triplets.'
    )
    print(
        f'Valid set: {kg_val.n_facts} triplets, Test set: {kg_test.n_facts} triplets.'
    )

    # # Define the model and criterion
    if 'TransE' in model_name:
        model = module(emb_dim,
                       kg_train.n_ent,
                       kg_train.n_rel,
                       dissimilarity_type='L2')
    else:
        model = module(ent_dim, rel_dim, kg_train.n_ent, kg_train.n_rel)
    # Move everything to CUDA if available
    if device == 'cuda:0':
        cuda.empty_cache()
        model.to(device)

    if os.path.exists(model_save_path):  # 存在则加载模型 进行测试
        load_ckpt(model_save_path, model, train=False)
        print(f'loading ckpt successful, start evaluate on test data...')
        print(model)
        model.eval()
        lp_evaluator = LinkPredictionEvaluator(model, kg_test)
        lp_evaluator.evaluate(eval_b_size, verbose=True)
        lp_evaluator.print_results()
        rp_evaluator = RelationPredictionEvaluator(model, kg_test)
        rp_evaluator.evaluate(eval_b_size, verbose=True)
        rp_evaluator.print_results()
    else:
        print('No pretrain model found!')
def main():
    # Define some hyper-parameters for training
    global optimizer
    benchmarks = 'GeoDBpedia21'
    model_name = 'TransR_GDR'
    opt_method = 'Adam'  # "Adagrad" "Adadelta" "Adam" "SGD"
    GDR = True  # 是否引入坐标信息

    emb_dim = 100  # TransE model
    ent_dim = emb_dim
    rel_dim = emb_dim
    lr = 0.001
    margin = 0.5

    n_epochs = 20000
    train_b_size = 256  # 训练时batch size
    eval_b_size = 64  # 测评valid test 时batch size

    #     save_time_freq = 5
    #     require_improvement = save_time_freq*5

    validation_freq = 10  # 多少轮进行在验证集进行一次测试 同时保存最佳模型
    require_improvement = validation_freq * 3  # 验证集top_k超过多少epoch没下降,结束训练
    model_save_path = './checkpoint/' + benchmarks + '_' + model_name + '_' + opt_method + '.ckpt'  # 保存最佳hits k (ent)模型
    device = 'cuda:0' if cuda.is_available() else 'cpu'

    # Load dataset
    module = getattr(import_module('torchkge.models'), model_name + 'Model')
    load_data = getattr(import_module('torchkge.utils.datasets'), 'load_' + benchmarks)

    print('Loading data...')
    kg_train, kg_val, kg_test = load_data(GDR=GDR)
    print(f'Train set: {kg_train.n_ent} entities, {kg_train.n_rel} relations, {kg_train.n_facts} triplets.')
    print(f'Valid set: {kg_val.n_facts} triplets, Test set: {kg_test.n_facts} triplets.')

    # Define the model and criterion
    print('Loading model...')
    if 'TransE' in model_name:
        model = module(emb_dim, kg_train.n_ent, kg_train.n_rel, dissimilarity_type='L2')
    else:
        model = module(ent_dim, rel_dim, kg_train.n_ent, kg_train.n_rel)
    criterion = MarginLoss(margin)

    # Move everything to CUDA if available
    if device == 'cuda:0':
        cuda.empty_cache()
        model.to(device)
        criterion.to(device)
        dataloader = DataLoader(kg_train, batch_size=train_b_size, use_cuda='all')
    else:
        dataloader = DataLoader(kg_train, batch_size=train_b_size, use_cuda=None)

    # Define the torch optimizer to be used
    optimizer = optimizer(model, opt_method=opt_method, lr=lr)
    # optimizer = Adam(model.parameters(), lr=lr, weight_decay=1e-5)
    sampler = BernoulliNegativeSampler(kg_train)

    start_epoch = 1
    best_score = float('-inf')
    if os.path.exists(model_save_path):  # 存在则加载模型 并继续训练
        start_epoch, best_score = load_ckpt(model_save_path, model, optimizer)
        print(f'loading ckpt sucessful, start on epoch {start_epoch}...')
    print(model)
    print('lr: {}, margin: {}, dim {}, total epoch: {}, device: {}, batch size: {}, optim: {}, GDR: {}' \
          .format(lr, margin, emb_dim, n_epochs, device, train_b_size, opt_method, GDR))

    print('Training...')
    last_improve = start_epoch  # 记录上次验证集loss下降的epoch数
    start = time.time()
    #     last_improve = start
    #     save_time = start
    for epoch in range(start_epoch, n_epochs + 1):
        #         model.normalize_parameters()

        running_loss = 0.0
        model.train()
        for i, batch in enumerate(dataloader):
            if GDR:
                h, t, r, point = batch[0], batch[1], batch[2], batch[3]
                n_h, n_t = sampler.corrupt_batch(h, t, r)  # 1:1 negative sampling
                n_point = id2point(n_h, n_t, kg_train.id2point)
                optimizer.zero_grad()

                # forward + backward + optimize
                pos, neg = model(h, t, n_h, n_t, r)
                loss = criterion(pos, neg, point, n_point)
            else:
                h, t, r = batch[0], batch[1], batch[2]
                n_h, n_t = sampler.corrupt_batch(h, t, r)
                optimizer.zero_grad()
                pos, neg = model(h, t, n_h, n_t, r)
                loss = criterion(pos, neg)
            loss.backward()
            optimizer.step()

            running_loss += loss.item()
        model.normalize_parameters()
        #         print('\rEpoch [{:>4}/{:>4}] | mean loss: {:>8.3f}, time: {}'.format(epoch, n_epochs, running_loss / len(dataloader), time_since(start)), end='', flush=True)

        #         # test
        if epoch % validation_freq == 0:
            create_dir_not_exists('./checkpoint')
            model.eval()
            evaluator = LinkPredictionEvaluator(model, kg_val)
            evaluator.evaluate(b_size=eval_b_size, verbose=False)
            _, hit_at_k = evaluator.hit_at_k(10)  # val filter hit_k
            print('Epoch [{:>5}/{:>5}] '.format(epoch, n_epochs), end='')
            if hit_at_k > best_score:
                save_ckpt(model, optimizer, epoch, best_score, model_save_path)
                best_score = hit_at_k
                improve = '*'  # 在有提升的结果后面加上*标注
                last_improve = epoch  # 验证集hit_k增大即认为有提升
            else:
                improve = ''
            msg = '| Train loss: {:>8.3f}, Val Hit@10: {:>5.2%}, Time {} {}'
            print(msg.format(running_loss / len(dataloader), hit_at_k, time_since(start), improve))
        #         model.normalize_parameters()
        if epoch - last_improve > require_improvement:
            # 验证集top_k超过一定epoch没增加,结束训练
            print("\nNo optimization for a long time, auto-stopping...")
            break

    #         # test
    #         if (time.time() - save_time)/60 > save_time_freq:
    #             create_dir_not_exists('./checkpoint')
    #             model.eval()
    #             evaluator = LinkPredictionEvaluator(model, kg_val)
    #             evaluator.evaluate(b_size=eval_b_size, verbose=False)
    #             _, hit_at_k = evaluator.hit_at_k(10)  # val filter hit_k
    #             if hit_at_k > best_score:
    #                 save_ckpt(model, optimizer, epoch, best_score, model_save_path)
    #                 best_score = hit_at_k
    #                 improve = '*'  # 在有提升的结果后面加上*标注
    #                 last_improve = time.time()  # 验证集hit_k增大即认为有提升
    #             else:
    #                 improve = ''
    #             save_time = time.time()
    #             msg = ', Val Hit@10: {:>5.2%} {}'
    #             print(msg.format(hit_at_k, improve))
    #         model.normalize_parameters()
    #         if (time.time() - last_improve)/60 > require_improvement:
    #             # 验证集top_k超过一定epoch没增加,结束训练
    #             print("\nNo optimization for a long time, auto-stopping...")
    #             break

    print('\nTraining done, start evaluate on test data...')
    print('model name: {}, lr: {}, dim {}, device: {}, eval batch size: {}, optim: {}, GDR: {}' \
          .format(model_name, lr, emb_dim, device, eval_b_size, opt_method, GDR))
    # Testing the best checkpoint on test dataset
    load_ckpt(model_save_path, model, optimizer)
    model.eval()
    lp_evaluator = LinkPredictionEvaluator(model, kg_test)
    lp_evaluator.evaluate(eval_b_size, verbose=False)
    lp_evaluator.print_results()
    rp_evaluator = RelationPredictionEvaluator(model, kg_test)
    rp_evaluator.evaluate(eval_b_size, verbose=False)
    rp_evaluator.print_results()
    print(f'Total time cost: {time_since(start)}')