示例#1
0
def _auroc_compute(
    preds: Tensor,
    target: Tensor,
    mode: str,
    num_classes: Optional[int] = None,
    pos_label: Optional[int] = None,
    average: Optional[str] = 'macro',
    max_fpr: Optional[float] = None,
    sample_weights: Optional[Sequence] = None,
) -> Tensor:
    # binary mode override num_classes
    if mode == 'binary':
        num_classes = 1

    # check max_fpr parameter
    if max_fpr is not None:
        if not isinstance(max_fpr, float) and 0 < max_fpr <= 1:
            raise ValueError(
                f"`max_fpr` should be a float in range (0, 1], got: {max_fpr}")

        if _TORCH_LOWER_1_6:
            raise RuntimeError(
                "`max_fpr` argument requires `torch.bucketize` which"
                " is not available below PyTorch version 1.6")

        # max_fpr parameter is only support for binary
        if mode != 'binary':
            raise ValueError(
                f"Partial AUC computation not available in"
                f" multilabel/multiclass setting, 'max_fpr' must be"
                f" set to `None`, received `{max_fpr}`.")

    # calculate fpr, tpr
    if mode == 'multi-label':
        if average == AverageMethod.MICRO:
            fpr, tpr, _ = roc(preds.flatten(), target.flatten(), 1, pos_label,
                              sample_weights)
        else:
            # for multilabel we iteratively evaluate roc in a binary fashion
            output = [
                roc(preds[:, i],
                    target[:, i],
                    num_classes=1,
                    pos_label=1,
                    sample_weights=sample_weights) for i in range(num_classes)
            ]
            fpr = [o[0] for o in output]
            tpr = [o[1] for o in output]
    else:
        fpr, tpr, _ = roc(preds, target, num_classes, pos_label,
                          sample_weights)

    # calculate standard roc auc score
    if max_fpr is None or max_fpr == 1:
        if mode == 'multi-label' and average == AverageMethod.MICRO:
            pass
        elif num_classes != 1:
            # calculate auc scores per class
            auc_scores = [
                _auc_compute_without_check(x, y, 1.0)
                for x, y in zip(fpr, tpr)
            ]

            # calculate average
            if average == AverageMethod.NONE:
                return auc_scores
            elif average == AverageMethod.MACRO:
                return torch.mean(torch.stack(auc_scores))
            elif average == AverageMethod.WEIGHTED:
                if mode == DataType.MULTILABEL:
                    support = torch.sum(target, dim=0)
                else:
                    support = torch.bincount(target.flatten(),
                                             minlength=num_classes)
                return torch.sum(
                    torch.stack(auc_scores) * support / support.sum())

            allowed_average = (AverageMethod.NONE.value,
                               AverageMethod.MACRO.value,
                               AverageMethod.WEIGHTED.value)
            raise ValueError(
                f"Argument `average` expected to be one of the following:"
                f" {allowed_average} but got {average}")

        return _auc_compute_without_check(fpr, tpr, 1.0)

    max_fpr = tensor(max_fpr, device=fpr.device)
    # Add a single point at max_fpr and interpolate its tpr value
    stop = torch.bucketize(max_fpr, fpr, out_int32=True, right=True)
    weight = (max_fpr - fpr[stop - 1]) / (fpr[stop] - fpr[stop - 1])
    interp_tpr = torch.lerp(tpr[stop - 1], tpr[stop], weight)
    tpr = torch.cat([tpr[:stop], interp_tpr.view(1)])
    fpr = torch.cat([fpr[:stop], max_fpr.view(1)])

    # Compute partial AUC
    partial_auc = _auc_compute_without_check(fpr, tpr, 1.0)

    # McClish correction: standardize result to be 0.5 if non-discriminant
    # and 1 if maximal
    min_area = 0.5 * max_fpr**2
    max_area = max_fpr
    return 0.5 * (1 + (partial_auc - min_area) / (max_area - min_area))
示例#2
0
def _auroc_compute(
    preds: Tensor,
    target: Tensor,
    mode: DataType,
    num_classes: Optional[int] = None,
    pos_label: Optional[int] = None,
    average: Optional[str] = "macro",
    max_fpr: Optional[float] = None,
    sample_weights: Optional[Sequence] = None,
) -> Tensor:
    """Computes Area Under the Receiver Operating Characteristic Curve.

    Args:
        preds: predictions from model (logits or probabilities)
        target: Ground truth labels
        mode: 'multi class multi dim' or 'multi-label' or 'binary'
        num_classes: integer with number of classes for multi-label and multiclass problems.
            Should be set to ``None`` for binary problems
        pos_label: integer determining the positive class.
            Should be set to ``None`` for binary problems
        average: Defines the reduction that is applied to the output:
        max_fpr: If not ``None``, calculates standardized partial AUC over the
            range [0, max_fpr]. Should be a float between 0 and 1.
        sample_weights: sample weights for each data point

    Example:
        >>> # binary case
        >>> preds = torch.tensor([0.13, 0.26, 0.08, 0.19, 0.34])
        >>> target = torch.tensor([0, 0, 1, 1, 1])
        >>> preds, target, mode = _auroc_update(preds, target)
        >>> _auroc_compute(preds, target, mode, pos_label=1)
        tensor(0.5000)

        >>> # multiclass case
        >>> preds = torch.tensor([[0.90, 0.05, 0.05],
        ...                       [0.05, 0.90, 0.05],
        ...                       [0.05, 0.05, 0.90],
        ...                       [0.85, 0.05, 0.10],
        ...                       [0.10, 0.10, 0.80]])
        >>> target = torch.tensor([0, 1, 1, 2, 2])
        >>> preds, target, mode = _auroc_update(preds, target)
        >>> _auroc_compute(preds, target, mode, num_classes=3)
        tensor(0.7778)
    """

    # binary mode override num_classes
    if mode == DataType.BINARY:
        num_classes = 1

    # check max_fpr parameter
    if max_fpr is not None:
        if not isinstance(max_fpr, float) and 0 < max_fpr <= 1:
            raise ValueError(
                f"`max_fpr` should be a float in range (0, 1], got: {max_fpr}")

        if _TORCH_LOWER_1_6:
            raise RuntimeError(
                "`max_fpr` argument requires `torch.bucketize` which"
                " is not available below PyTorch version 1.6")

        # max_fpr parameter is only support for binary
        if mode != DataType.BINARY:
            raise ValueError(
                f"Partial AUC computation not available in"
                f" multilabel/multiclass setting, 'max_fpr' must be"
                f" set to `None`, received `{max_fpr}`.")

    # calculate fpr, tpr
    if mode == DataType.MULTILABEL:
        if average == AverageMethod.MICRO:
            fpr, tpr, _ = roc(preds.flatten(), target.flatten(), 1, pos_label,
                              sample_weights)
        elif num_classes:
            # for multilabel we iteratively evaluate roc in a binary fashion
            output = [
                roc(preds[:, i],
                    target[:, i],
                    num_classes=1,
                    pos_label=1,
                    sample_weights=sample_weights) for i in range(num_classes)
            ]
            fpr = [o[0] for o in output]
            tpr = [o[1] for o in output]
        else:
            raise ValueError(
                "Detected input to be `multilabel` but you did not provide `num_classes` argument"
            )
    else:
        if mode != DataType.BINARY:
            if num_classes is None:
                raise ValueError(
                    "Detected input to `multiclass` but you did not provide `num_classes` argument"
                )
            if average == AverageMethod.WEIGHTED and len(
                    torch.unique(target)) < num_classes:
                # If one or more classes has 0 observations, we should exclude them, as its weight will be 0
                target_bool_mat = torch.zeros((len(target), num_classes),
                                              dtype=bool,
                                              device=target.device)
                target_bool_mat[torch.arange(len(target)), target.long()] = 1
                class_observed = target_bool_mat.sum(axis=0) > 0
                for c in range(num_classes):
                    if not class_observed[c]:
                        warnings.warn(
                            f"Class {c} had 0 observations, omitted from AUROC calculation",
                            UserWarning)
                preds = preds[:, class_observed]
                target = target_bool_mat[:, class_observed]
                target = torch.where(target)[1]
                num_classes = class_observed.sum()
                if num_classes == 1:
                    raise ValueError(
                        "Found 1 non-empty class in `multiclass` AUROC calculation"
                    )
        fpr, tpr, _ = roc(preds, target, num_classes, pos_label,
                          sample_weights)

    # calculate standard roc auc score
    if max_fpr is None or max_fpr == 1:
        if mode == DataType.MULTILABEL and average == AverageMethod.MICRO:
            pass
        elif num_classes != 1:
            # calculate auc scores per class
            auc_scores = [
                _auc_compute_without_check(x, y, 1.0)
                for x, y in zip(fpr, tpr)
            ]

            # calculate average
            if average == AverageMethod.NONE:
                return tensor(auc_scores)
            if average == AverageMethod.MACRO:
                return torch.mean(torch.stack(auc_scores))
            if average == AverageMethod.WEIGHTED:
                if mode == DataType.MULTILABEL:
                    support = torch.sum(target, dim=0)
                else:
                    support = torch.bincount(target.flatten(),
                                             minlength=num_classes)
                return torch.sum(
                    torch.stack(auc_scores) * support / support.sum())

            allowed_average = (AverageMethod.NONE.value,
                               AverageMethod.MACRO.value,
                               AverageMethod.WEIGHTED.value)
            raise ValueError(
                f"Argument `average` expected to be one of the following:"
                f" {allowed_average} but got {average}")

        return _auc_compute_without_check(fpr, tpr, 1.0)

    _device = fpr.device if isinstance(fpr, Tensor) else fpr[0].device
    max_area: Tensor = tensor(max_fpr, device=_device)
    # Add a single point at max_fpr and interpolate its tpr value
    stop = torch.bucketize(max_area, fpr, out_int32=True, right=True)
    weight = (max_area - fpr[stop - 1]) / (fpr[stop] - fpr[stop - 1])
    interp_tpr: Tensor = torch.lerp(tpr[stop - 1], tpr[stop], weight)
    tpr = torch.cat([tpr[:stop], interp_tpr.view(1)])
    fpr = torch.cat([fpr[:stop], max_area.view(1)])

    # Compute partial AUC
    partial_auc = _auc_compute_without_check(fpr, tpr, 1.0)

    # McClish correction: standardize result to be 0.5 if non-discriminant and 1 if maximal
    min_area: Tensor = 0.5 * max_area**2
    return 0.5 * (1 + (partial_auc - min_area) / (max_area - min_area))