def __init__(self, in_dim, out_dim, hidden_dim=100): super(Model, self).__init__() self.in_dim, self.out_dim = in_dim, out_dim self.hidden_dim = hidden_dim self.emb = cls(self.num_words, self.hidden_dim) self.pool = torchmodels.Linear( in_features=self.hidden_dim * 3, out_features=self.hidden_dim ) self.in_linear = torchmodels.Linear(self.in_dim, self.hidden_dim) self.out_linear = torchmodels.Linear(self.hidden_dim, self.out_dim)
def __init__(self, *args, hidden_dim=300, num_layers=2, nonlinear=nonlinear.AbstractNonlinear, **kwargs): super(MLP, self).__init__(*args, **kwargs) self.hidden_dim = hidden_dim self.num_layers = num_layers self.nonlinear_cls = nonlinear self.input_layer = torchmodels.Linear(self.input_dim, self.hidden_dim) self.hidden_layers = torchmodels.Sequential( *[self.nonlinear_cls(self.hidden_dim, self.hidden_dim) for _ in range(self.num_layers)] ) self.output_layer = torchmodels.Linear(self.hidden_dim, self.output_dim)
def __init__(self, *args, hidden_dim=100, **kwargs): super().__init__(*args, **kwargs) self.hidden_dim = hidden_dim self.input_layer = torchmodels.Sequential( torchmodels.Linear(in_features=self.input_dim, out_features=self.asv_dim), ) # speaker mask is a [num_speakers x num asv] BoolTensor # that indicates active asvs for each speaker self.speaker_asv_mask = nn.Parameter(self._create_speaker_asv_mask(), requires_grad=False)
def __init__(self, *args, num_layers=1, dropout=0.0, **kwargs): super(LSTMDecodingRNN, self).__init__(*args, **kwargs) self.num_layers = num_layers self.dropout = dropout self.init_layer_c = torchmodels.Linear( in_features=self.init_dim, out_features=self.num_layers * self.hidden_dim ) self.init_layer_h = torchmodels.Linear( in_features=self.init_dim, out_features=self.num_layers * self.hidden_dim ) self.lstm = nn.LSTM( input_size=self.input_dim, hidden_size=self.hidden_dim, num_layers=self.num_layers, bidirectional=False, dropout=self.dropout )
def __init__(self, *args, rnn_dim=200, decoding_rnn=AbstractDecodingRNN, **kwargs): super(RNNSentDecoder, self).__init__(*args, **kwargs) self.rnn_dim = rnn_dim self.rnn_cls = decoding_rnn self.rnn = self.rnn_cls(input_dim=self.word_dim, init_dim=self.hidden_dim, hidden_dim=self.rnn_dim) self.linear = torchmodels.Linear(in_features=self.rnn_dim, out_features=self.word_dim)
def __init__(self, *args, **kwargs): super(FunctionalNonlinear, self).__init__(*args, **kwargs) self.linear = torchmodels.Linear(self.in_dim, self.out_dim) self.func = self.get_func()