def make_lstm_ctc(noutput=noutput):
    model = nn.Sequential(
        layers.Input("BDHW", range=(0, 1), sizes=[None, 1, None, None]),
        *combos.conv2d_block(50, 3, mp=(2, 1)),
        *combos.conv2d_block(100, 3, mp=(2, 1)),
        *combos.conv2d_block(150, 3, mp=2), *project_and_lstm(100, noutput))
    flex.shape_inference(model, (1, 1, 128, 512))
    return model
def make_lstm_unet(noutput=noutput):
    model = nn.Sequential(
        layers.Input("BDHW", range=(0, 1), sizes=[None, 1, None, None]),
        *combos.conv2d_block(64, 3, repeat=3),
        combos.make_unet([64, 128, 256, 512]),
        *combos.conv2d_block(128, 3, repeat=2),
        *project_and_lstm(100, noutput))
    flex.shape_inference(model, (1, 1, 128, 256))
    return model
def make_conv_resnet(noutput=noutput):
    model = nn.Sequential(
        layers.Input("BDHW", range=(0, 1), sizes=[None, 1, None, None]),
        *combos.conv2d_block(64, 3, mp=2), *combos.resnet_blocks(5, 64),
        *combos.conv2d_block(128, 3, mp=(2, 1)), *combos.resnet_blocks(5, 128),
        *combos.conv2d_block(192, 3, mp=2), *combos.resnet_blocks(5, 192),
        *combos.conv2d_block(256, 3, mp=(2, 1)), *combos.resnet_blocks(5, 256),
        *combos.conv2d_block(512, 3), *project_and_conv1d(512, noutput))
    flex.shape_inference(model, (1, 1, 128, 512))
    return model
def make_conv_only(noutput=noutput):
    model = nn.Sequential(
        layers.Input("BDHW", range=(0, 1), sizes=[None, 1, None, None]),
        *combos.conv2d_block(100, 3, mp=2, repeat=2),
        *combos.conv2d_block(200, 3, mp=2, repeat=2),
        *combos.conv2d_block(300, 3, mp=2, repeat=2),
        *combos.conv2d_block(400, 3, repeat=2),
        *project_and_conv1d(800, noutput))
    flex.shape_inference(model, (1, 1, 48, 300))
    return model
def make_seg_unet(noutput=3):
    model = nn.Sequential(
        layers.Input("BDHW", range=(0, 1), sizes=[None, 1, None, None]),
        *combos.conv2d_block(64, 3, repeat=3),
        combos.make_unet([128, 256, 512]), *combos.conv2d_block(64,
                                                                3,
                                                                repeat=2),
        flex.Conv2d(noutput, 5))
    flex.shape_inference(model, (1, 1, 256, 256))
    return model
def make_seg_conv(noutput=3):
    model = nn.Sequential(
        layers.Input("BDHW", range=(0, 1), sizes=[None, 1, None, None]),
        layers.KeepSize(
            sub=nn.Sequential(*combos.conv2d_block(50, 3, mp=2, repeat=3),
                              *combos.conv2d_block(100, 3, mp=2, repeat=3),
                              *combos.conv2d_block(200, 3, mp=2, repeat=3))),
        *combos.conv2d_block(400, 5), flex.Conv2d(noutput, 3))
    flex.shape_inference(model, (1, 1, 256, 256))
    return model
def make_lstm_normalized(noutput=noutput):
    model = nn.Sequential(
        layers.Input("BDHW", range=(0, 1), sizes=[None, 1, 80, None]),
        *combos.conv2d_block(50, 3, mp=(2, 1)),
        *combos.conv2d_block(100, 3, mp=(2, 1)),
        *combos.conv2d_block(150, 3, mp=2), layers.Reshape(0, [1, 2], 3),
        layers.Reorder("BDL", "LBD"), flex.LSTM(100, bidirectional=True),
        layers.Reorder("LBD", "BDL"), flex.Conv1d(noutput, 1),
        layers.Reorder("BDL", ocr_output))
    flex.shape_inference(model, (1, 1, 80, 200))
    return model
示例#8
0
def test_UnetLayer():
    for mode in range(100):
        if f"UnetLayer{mode}" not in combos.__dict__:
            continue
        print(f"testting mode {mode}:")
        mod = combos.__dict__[f"UnetLayer{mode}"](33, dropout=0.5)
        flex.shape_inference(mod, (17, 11, 64, 64))
        print(mod)
        a = torch.ones((17, 11, 64, 64))
        b = mod(a)
        assert b.shape[:1] == a.shape[:1]
        assert b.shape[2:] == a.shape[2:]
示例#9
0
def test_shape_inference():
    mod = nn.Sequential(flex.Conv1d(3, 3, padding=1))
    print(mod)
    assert "Flex" in repr(mod)
    a = torch.zeros((7, 3, 99))
    b = mod(a)
    assert b.size() == (7, 3, 99)
    assert "Flex" in repr(mod)
    print(mod)
    flex.shape_inference(mod, a.shape)
    print(mod)
    assert "Flex" not in repr(mod)
    a = torch.zeros((4, 3, 9))
    b = mod(a)
    assert b.size() == (4, 3, 9)
def make_lstm_transpose(noutput=noutput):
    model = nn.Sequential(
        layers.Input("BDHW", range=(0, 1), sizes=[None, 1, None, None]),
        *combos.conv2d_block(50, 3, repeat=2),
        *combos.conv2d_block(100, 3, repeat=2),
        *combos.conv2d_block(150, 3, repeat=2),
        *combos.conv2d_block(200, 3, repeat=2),
        layers.Fun("lambda x: x.sum(2)"),  # BDHW -> BDW
        flex.ConvTranspose1d(800, 1, stride=2),  # <-- undo too tight spacing
        #flex.BatchNorm1d(), nn.ReLU(),
        layers.Reorder("BDL", "LBD"),
        flex.LSTM(100, bidirectional=True),
        layers.Reorder("LBD", "BDL"),
        flex.Conv1d(noutput, 1),
        layers.Reorder("BDL", ocr_output))
    flex.shape_inference(model, (1, 1, 128, 512))
    return model
def make_lstm_keep(noutput=noutput):
    model = nn.Sequential(
        layers.Input("BDHW", range=(0, 1), sizes=[None, 1, None, None]),
        layers.KeepSize(
            mode="nearest",
            dims=[3],
            sub=nn.Sequential(
                *combos.conv2d_block(50, 3, repeat=2),
                *combos.conv2d_block(100, 3, repeat=2),
                *combos.conv2d_block(150, 3, repeat=2),
                layers.Fun("lambda x: x.sum(2)")  # BDHW -> BDW
            )),
        flex.Conv1d(500, 5, padding=2),
        flex.BatchNorm1d(),
        nn.ReLU(),
        layers.Reorder("BDL", "LBD"),
        flex.LSTM(200, bidirectional=True),
        layers.Reorder("LBD", "BDL"),
        flex.Conv1d(noutput, 1),
        layers.Reorder("BDL", ocr_output))
    flex.shape_inference(model, (1, 1, 128, 512))
    return model