def get_trainloader_resnetAttr(dataset_reid,transform_train,pin_memory):

    if args.dataset=='market1501' or args.dataset=='dukemtmcreid' or args.dataset=='pa100K':
        trainloader_reid = DataLoader(
            ImageDataset(dataset_reid.train,transform=transform_train,arch=args.arch),
            sampler=RandomIdentitySampler(dataset_reid.train, args.train_batch, args.num_instances),
            batch_size=args.train_batch, num_workers=args.workers,
            pin_memory=pin_memory, drop_last=True,
        )

    return trainloader_reid
示例#2
0
def main():
    global args, best_rank1

    torch.manual_seed(args.seed)
    if not args.use_avai_gpus:
        os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
    use_gpu = torch.cuda.is_available()
    if args.use_cpu: use_gpu = False

    if not args.evaluate:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'))
    else:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt'))
    print("==========\nArgs:{}\n==========".format(args))

    if use_gpu:
        print("Currently using GPU {}".format(args.gpu_devices))
        cudnn.benchmark = True
        torch.cuda.manual_seed_all(args.seed)
    else:
        print("Currently using CPU (GPU is highly recommended)")

    print("Initializing dataset {}".format(args.dataset))
    dataset = data_manager.init_imgreid_dataset(
        root=args.root,
        name=args.dataset,
        split_id=args.split_id,
        cuhk03_labeled=args.cuhk03_labeled,
        cuhk03_classic_split=args.cuhk03_classic_split,
    )

    transform_train = T.Compose([
        T.Random2DTranslation(args.height, args.width),
        T.RandomHorizontalFlip(),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    transform_test = T.Compose([
        T.Resize((args.height, args.width)),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    pin_memory = True if use_gpu else False

    trainloader = DataLoader(
        ImageDataset(dataset.train, transform=transform_train),
        sampler=RandomIdentitySampler(dataset.train, args.train_batch,
                                      args.num_instances),
        batch_size=args.train_batch,
        num_workers=args.workers,
        pin_memory=pin_memory,
        drop_last=True,
    )

    queryloader = DataLoader(
        ImageDataset(dataset.query, transform=transform_test),
        batch_size=args.test_batch,
        shuffle=False,
        num_workers=args.workers,
        pin_memory=pin_memory,
        drop_last=False,
    )

    galleryloader = DataLoader(
        ImageDataset(dataset.gallery, transform=transform_test),
        batch_size=args.test_batch,
        shuffle=False,
        num_workers=args.workers,
        pin_memory=pin_memory,
        drop_last=False,
    )

    print("Initializing model: {}".format(args.arch))
    model = models.init_model(name=args.arch,
                              num_classes=dataset.num_train_pids,
                              loss={'xent', 'htri'})
    print("Model size: {:.3f} M".format(count_num_param(model)))

    if args.label_smooth:
        criterion_xent = CrossEntropyLabelSmooth(
            num_classes=dataset.num_train_pids, use_gpu=use_gpu)
    else:
        criterion_xent = nn.CrossEntropyLoss()
    criterion_htri = TripletLoss(margin=args.margin)

    optimizer = init_optim(args.optim, model.parameters(), args.lr,
                           args.weight_decay)
    scheduler = lr_scheduler.MultiStepLR(optimizer,
                                         milestones=args.stepsize,
                                         gamma=args.gamma)

    if args.load_weights and check_isfile(args.load_weights):
        # load pretrained weights but ignore layers that don't match in size
        checkpoint = torch.load(args.load_weights)
        pretrain_dict = checkpoint['state_dict']
        model_dict = model.state_dict()
        pretrain_dict = {
            k: v
            for k, v in pretrain_dict.items()
            if k in model_dict and model_dict[k].size() == v.size()
        }
        model_dict.update(pretrain_dict)
        model.load_state_dict(model_dict)
        print("Loaded pretrained weights from '{}'".format(args.load_weights))

    if args.resume and check_isfile(args.resume):
        checkpoint = torch.load(args.resume)
        model.load_state_dict(checkpoint['state_dict'])
        args.start_epoch = checkpoint['epoch'] + 1
        best_rank1 = checkpoint['rank1']
        print("Loaded checkpoint from '{}'".format(args.resume))
        print("- start_epoch: {}\n- rank1: {}".format(args.start_epoch,
                                                      best_rank1))

    if use_gpu:
        model = nn.DataParallel(model).cuda()

    if args.evaluate:
        print("Evaluate only")
        distmat = test(model,
                       queryloader,
                       galleryloader,
                       use_gpu,
                       return_distmat=True)
        if args.visualize_ranks:
            visualize_ranked_results(
                distmat,
                dataset,
                save_dir=osp.join(args.save_dir, 'ranked_results'),
                topk=20,
            )
        return

    start_time = time.time()
    train_time = 0
    best_epoch = args.start_epoch
    print("==> Start training")

    for epoch in range(args.start_epoch, args.max_epoch):
        start_train_time = time.time()
        train(epoch, model, criterion_xent, criterion_htri, optimizer,
              trainloader, use_gpu)
        train_time += round(time.time() - start_train_time)

        scheduler.step()

        if (epoch + 1) > args.start_eval and args.eval_step > 0 and (
                epoch + 1) % args.eval_step == 0 or (epoch +
                                                     1) == args.max_epoch:
            print("==> Test")
            rank1 = test(model, queryloader, galleryloader, use_gpu)
            is_best = rank1 > best_rank1

            if is_best:
                best_rank1 = rank1
                best_epoch = epoch + 1

            if use_gpu:
                state_dict = model.module.state_dict()
            else:
                state_dict = model.state_dict()

            save_checkpoint(
                {
                    'state_dict': state_dict,
                    'rank1': rank1,
                    'epoch': epoch,
                }, is_best,
                osp.join(args.save_dir,
                         'checkpoint_ep' + str(epoch + 1) + '.pth.tar'))

    print("==> Best Rank-1 {:.1%}, achieved at epoch {}".format(
        best_rank1, best_epoch))

    elapsed = round(time.time() - start_time)
    elapsed = str(datetime.timedelta(seconds=elapsed))
    train_time = str(datetime.timedelta(seconds=train_time))
    print(
        "Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".
        format(elapsed, train_time))
示例#3
0
    def __init__(
        self,
        use_gpu,
        source_names,
        target_names,
        root,
        split_id=0,
        height=256,
        width=128,
        train_batch_size=32,
        test_batch_size=100,
        workers=4,
        train_sampler='',
        data_augment='none',
        num_instances=4,  # number of instances per identity (for RandomIdentitySampler)
        cuhk03_labeled=False,  # use cuhk03's labeled or detected images
        cuhk03_classic_split=False  # use cuhk03's classic split or 767/700 split
    ):
        super(ImageDataManager, self).__init__()

        from torchreid.dataset_loader import ImageDataset
        from torchreid.datasets import init_imgreid_dataset
        from torchreid.transforms import build_transforms
        from torch.utils.data import DataLoader
        from torchreid.samplers import RandomIdentitySampler

        self.use_gpu = use_gpu
        self.source_names = source_names
        self.target_names = target_names
        self.root = root
        self.split_id = split_id
        self.height = height
        self.width = width
        self.train_batch_size = train_batch_size
        self.test_batch_size = test_batch_size
        self.workers = workers
        self.train_sampler = train_sampler
        self.num_instances = num_instances
        self.cuhk03_labeled = cuhk03_labeled
        self.cuhk03_classic_split = cuhk03_classic_split
        self.pin_memory = True if self.use_gpu else False

        # Build train and test transform functions
        transform_train = build_transforms(self.height,
                                           self.width,
                                           is_train=True,
                                           data_augment=data_augment)
        transform_test = build_transforms(self.height,
                                          self.width,
                                          is_train=False,
                                          data_augment=data_augment)
        # transform_test_flip = build_transforms(self.height, self.width, is_train=False, data_augment=data_augment, flip=True)

        print("=> Initializing TRAIN (source) datasets")
        self.train = []
        self._num_train_pids = 0
        self._num_train_cams = 0

        for name in self.source_names:
            dataset = init_imgreid_dataset(
                root=self.root,
                name=name,
                split_id=self.split_id,
                cuhk03_labeled=self.cuhk03_labeled,
                cuhk03_classic_split=self.cuhk03_classic_split)

            for img_path, pid, camid in dataset.train:
                pid += self._num_train_pids
                camid += self._num_train_cams
                self.train.append((img_path, pid, camid))

            self._num_train_pids += dataset.num_train_pids
            self._num_train_cams += dataset.num_train_cams

        if self.train_sampler == 'RandomIdentitySampler':
            print('!!! Using RandomIdentitySampler !!!')
            self.trainloader = DataLoader(
                ImageDataset(self.train, transform=transform_train),
                sampler=RandomIdentitySampler(self.train,
                                              self.train_batch_size,
                                              self.num_instances),
                batch_size=self.train_batch_size,
                shuffle=False,
                num_workers=self.workers,
                pin_memory=self.pin_memory,
                drop_last=True)

        else:
            self.trainloader = DataLoader(ImageDataset(
                self.train, transform=transform_train),
                                          batch_size=self.train_batch_size,
                                          shuffle=True,
                                          num_workers=self.workers,
                                          pin_memory=self.pin_memory,
                                          drop_last=True)

        print("=> Initializing TEST (target) datasets")
        self.testloader_dict = {
            name: {
                'query': None,
                'gallery': None
            }
            for name in self.target_names
        }
        self.testdataset_dict = {
            name: {
                'query': None,
                'gallery': None
            }
            for name in self.target_names
        }

        for name in self.target_names:
            dataset = init_imgreid_dataset(
                root=self.root,
                name=name,
                split_id=self.split_id,
                cuhk03_labeled=self.cuhk03_labeled,
                cuhk03_classic_split=self.cuhk03_classic_split)

            self.testloader_dict[name]['new_vid_old_cid_query'] = DataLoader(
                ImageDataset(dataset.new_vid_old_cid_query,
                             transform=transform_test),
                batch_size=self.test_batch_size,
                shuffle=False,
                num_workers=self.workers,
                pin_memory=self.pin_memory,
                drop_last=False)

            self.testloader_dict[name]['new_vid_old_cid_val'] = DataLoader(
                ImageDataset(dataset.new_vid_old_cid_val,
                             transform=transform_test),
                batch_size=self.test_batch_size,
                shuffle=False,
                num_workers=self.workers,
                pin_memory=self.pin_memory,
                drop_last=False)

            self.testloader_dict[name]['new_vid_new_cid_query'] = DataLoader(
                ImageDataset(dataset.new_vid_new_cid_query,
                             transform=transform_test),
                batch_size=self.test_batch_size,
                shuffle=False,
                num_workers=self.workers,
                pin_memory=self.pin_memory,
                drop_last=False)

            self.testloader_dict[name]['new_vid_new_cid_val'] = DataLoader(
                ImageDataset(dataset.new_vid_new_cid_val,
                             transform=transform_test),
                batch_size=self.test_batch_size,
                shuffle=False,
                num_workers=self.workers,
                pin_memory=self.pin_memory,
                drop_last=False)

            self.testloader_dict[name]['train_gallery'] = DataLoader(
                ImageDataset(dataset.train_gallery, transform=transform_test),
                batch_size=self.test_batch_size,
                shuffle=False,
                num_workers=self.workers,
                pin_memory=self.pin_memory,
                drop_last=False)

            # self.testdataset_dict[name]['query'] = dataset.query
            # self.testdataset_dict[name]['gallery'] = dataset.gallery

        print("\n")
        print("  **************** Summary ****************")
        print("  train names      : {}".format(self.source_names))
        print("  # train datasets : {}".format(len(self.source_names)))
        print("  # train ids      : {}".format(self._num_train_pids))
        print("  # train images   : {}".format(len(self.train)))
        print("  # train cameras  : {}".format(self._num_train_cams))
        print("  test names       : {}".format(self.target_names))
        print("  *****************************************")
        print("\n")
示例#4
0
def main():
    torch.manual_seed(args.seed)
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
    use_gpu = torch.cuda.is_available()
    if args.use_cpu: use_gpu = False

    if not args.evaluate:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'))
    else:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt'))
    print("==========\nArgs:{}\n==========".format(args))

    if use_gpu:
        print("Currently using GPU {}".format(args.gpu_devices))
        cudnn.benchmark = True
        torch.cuda.manual_seed_all(args.seed)
    else:
        print("Currently using CPU (GPU is highly recommended)")

    print("Initializing dataset {}".format(args.dataset))
    dataset = data_manager.init_vidreid_dataset(root=args.root, name=args.dataset)

    transform_train = T.Compose([
        T.Random2DTranslation(args.height, args.width),
        T.RandomHorizontalFlip(),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    transform_test = T.Compose([
        T.Resize((args.height, args.width)),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    pin_memory = True if use_gpu else False

    # decompose tracklets into images for image-based training
    new_train = []
    for img_paths, pid, camid in dataset.train:
        for img_path in img_paths:
            new_train.append((img_path, pid, camid))

    trainloader = DataLoader(
        ImageDataset(new_train, transform=transform_train),
        sampler=RandomIdentitySampler(new_train, args.train_batch, args.num_instances),
        batch_size=args.train_batch, num_workers=args.workers,
        pin_memory=pin_memory, drop_last=True,
    )

    queryloader = DataLoader(
        VideoDataset(dataset.query, seq_len=args.seq_len, sample='evenly', transform=transform_test),
        batch_size=args.test_batch, shuffle=False, num_workers=args.workers,
        pin_memory=pin_memory, drop_last=False,
    )

    galleryloader = DataLoader(
        VideoDataset(dataset.gallery, seq_len=args.seq_len, sample='evenly', transform=transform_test),
        batch_size=args.test_batch, shuffle=False, num_workers=args.workers,
        pin_memory=pin_memory, drop_last=False,
    )

    print("Initializing model: {}".format(args.arch))
    model = models.init_model(name=args.arch, num_classes=dataset.num_train_pids, loss={'xent', 'htri'})
    print("Model size: {:.3f} M".format(count_num_param(model)))

    criterion_xent = nn.CrossEntropyLoss()
    criterion_htri = TripletLoss(margin=args.margin)
    criterion_KA = KALoss(margin=args.margin, same_margin = args.same_margin, use_auto_samemargin = args.use_auto_samemargin)        
    cirterion_lifted = LiftedLoss(margin=args.margin)
    cirterion_batri = BA_TripletLoss(margin=args.margin)
    
    if args.use_auto_samemargin == True:
        G_params = [{'params': model.parameters(), 'lr': args.lr }, {'params': criterion_KA.auto_samemargin, 'lr': args.lr}]
    else :
        G_params = [para for _, para in model.named_parameters()]
    
    optimizer = init_optim(args.optim, G_params, args.lr, args.weight_decay)

    if args.load_weights:
        # load pretrained weights but ignore layers that don't match in size
        if check_isfile(args.load_weights):
            checkpoint = torch.load(args.load_weights)
            pretrain_dict = checkpoint['state_dict']
            model_dict = model.state_dict()
            pretrain_dict = {k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size()}
            model_dict.update(pretrain_dict)
            model.load_state_dict(model_dict)
            print("Loaded pretrained weights from '{}'".format(args.load_weights))

    if args.resume:
        if check_isfile(args.resume):
            checkpoint = torch.load(args.resume)
            model.load_state_dict(checkpoint['state_dict'])
            args.start_epoch = checkpoint['epoch']
            rank1 = checkpoint['rank1']
            print("Loaded checkpoint from '{}'".format(args.resume))
            print("- start_epoch: {}\n- rank1: {}".format(args.start_epoch, rank1))

    if use_gpu:
        model = nn.DataParallel(model).cuda()

    if args.evaluate:
        print("Evaluate only")
        distmat = test(model, queryloader, galleryloader, args.pool, use_gpu, return_distmat=True)
        if args.vis_ranked_res:
            visualize_ranked_results(
                distmat, dataset,
                save_dir=osp.join(args.save_dir, 'ranked_results'),
                topk=20,
            )
        return

    start_time = time.time()
    train_time = 0
    best_rank1 = -np.inf
    best_epoch = 0
    print("==> Start training")

    for epoch in range(args.start_epoch, args.max_epoch):
        start_train_time = time.time()
        adjust_learning_rate(optimizer, epoch)
        
        train(epoch, model, cirterion_batri, cirterion_lifted, criterion_xent, criterion_htri, criterion_KA, optimizer, trainloader, use_gpu)
        
        train_time += round(time.time() - start_train_time)
        
        scheduler.step()
        
        if (epoch + 1) > args.start_eval and args.eval_step > 0 and (epoch + 1) % args.eval_step == 0 or (epoch + 1) == args.max_epoch:
            print("==> Test")
            rank1 = test(model, queryloader, galleryloader, args.pool, use_gpu)
            is_best = rank1 > best_rank1
            
            if is_best:
                best_rank1 = rank1
                best_epoch = epoch + 1

            if use_gpu:
                state_dict = model.module.state_dict()
            else:
                state_dict = model.state_dict()
            
            save_checkpoint({
                'state_dict': state_dict,
                'rank1': rank1,
                'epoch': epoch,
            }, is_best, osp.join(args.save_dir, 'checkpoint_ep' + str(epoch + 1) + '.pth.tar'))

    print("==> Best Rank-1 {:.1%}, achieved at epoch {}".format(best_rank1, best_epoch))

    elapsed = round(time.time() - start_time)
    elapsed = str(datetime.timedelta(seconds=elapsed))
    train_time = str(datetime.timedelta(seconds=train_time))
    print("Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".format(elapsed, train_time))