示例#1
0
def point_to_voxel(x, z):
    if (z.additional_features is None
            or z.additional_features.get("idx_query") is None
            or z.additional_features["idx_query"].get(x.s) is None):
        # pc_hash = hash_gpu(torch.floor(z.C).int())
        pc_hash = spf.sphash(
            torch.cat([
                torch.floor(z.C[:, :3] / x.s).int() * x.s,
                z.C[:, -1].int().view(-1, 1)
            ], 1))
        sparse_hash = spf.sphash(x.C)
        idx_query = spf.sphashquery(pc_hash, sparse_hash)
        counts = spf.spcount(idx_query.int(), x.C.shape[0])
        z.additional_features["idx_query"][x.s] = idx_query
        z.additional_features["counts"][x.s] = counts
    else:
        idx_query = z.additional_features["idx_query"][x.s]
        counts = z.additional_features["counts"][x.s]

    inserted_feat = spf.spvoxelize(z.F, idx_query, counts)
    new_tensor = SparseTensor(inserted_feat, x.C, x.s)
    new_tensor.coord_maps = x.coord_maps
    new_tensor.kernel_maps = x.kernel_maps

    return new_tensor
示例#2
0
文件: utils.py 项目: zxczrx123/e3d
def initial_voxelize(z, init_res, after_res):
    new_float_coord = torch.cat(
        [(z.C[:, :3] * init_res) / after_res, z.C[:, -1].view(-1, 1)], 1)

    pc_hash = spf.sphash(torch.floor(new_float_coord).int())
    sparse_hash = torch.unique(pc_hash)
    idx_query = spf.sphashquery(pc_hash, sparse_hash)
    counts = spf.spcount(idx_query.int(), len(sparse_hash))

    inserted_coords = spf.spvoxelize(torch.floor(new_float_coord), idx_query,
                                     counts)
    inserted_coords = torch.round(inserted_coords).int()
    inserted_feat = spf.spvoxelize(z.F, idx_query, counts)

    new_tensor = SparseTensor(inserted_feat, inserted_coords, 1)
    new_tensor.check()
    z.additional_features['idx_query'][1] = idx_query
    z.additional_features['counts'][1] = counts
    z.C = new_float_coord

    return new_tensor
示例#3
0
文件: utils.py 项目: zxczrx123/e3d
def voxel_to_point(x, z, nearest=False):
    if z.idx_query is None or z.weights is None or z.idx_query.get(
            x.s) is None or z.weights.get(x.s) is None:
        kr = KernelRegion(2, x.s, 1)
        off = kr.get_kernel_offset().to(z.F.device)
        #old_hash = kernel_hash_gpu(torch.floor(z.C).int(), off)
        old_hash = spf.sphash(
            torch.cat([
                torch.floor(z.C[:, :3] / x.s).int() * x.s,
                z.C[:, -1].int().view(-1, 1)
            ], 1), off)
        pc_hash = spf.sphash(x.C.to(z.F.device))
        idx_query = spf.sphashquery(old_hash, pc_hash)
        weights = spf.calc_ti_weights(z.C, idx_query,
                                      scale=x.s).transpose(0, 1).contiguous()
        idx_query = idx_query.transpose(0, 1).contiguous()
        if nearest:
            weights[:, 1:] = 0.
            idx_query[:, 1:] = -1
        new_feat = spf.spdevoxelize(x.F, idx_query, weights)
        new_tensor = PointTensor(new_feat,
                                 z.C,
                                 idx_query=z.idx_query,
                                 weights=z.weights)
        new_tensor.additional_features = z.additional_features
        new_tensor.idx_query[x.s] = idx_query
        new_tensor.weights[x.s] = weights
        z.idx_query[x.s] = idx_query
        z.weights[x.s] = weights

    else:
        new_feat = spf.spdevoxelize(x.F, z.idx_query.get(x.s),
                                    z.weights.get(x.s))
        new_tensor = PointTensor(new_feat,
                                 z.C,
                                 idx_query=z.idx_query,
                                 weights=z.weights)
        new_tensor.additional_features = z.additional_features

    return new_tensor
示例#4
0
def point_to_voxel(x, z):
    if z.additional_features is None or z.additional_features.get('idx_query') is None\
       or z.additional_features['idx_query'].get(x.s) is None:
        #pc_hash = hash_gpu(torch.floor(z.C).int())
        pc_hash = F.sphash(
            torch.cat([
                torch.floor(z.C[:, :3] / x.s[0]).int() * x.s[0],
                z.C[:, -1].int().view(-1, 1)
            ], 1))
        sparse_hash = F.sphash(x.C)
        idx_query = F.sphashquery(pc_hash, sparse_hash)
        counts = F.spcount(idx_query.int(), x.C.shape[0])
        z.additional_features['idx_query'][x.s] = idx_query
        z.additional_features['counts'][x.s] = counts
    else:
        idx_query = z.additional_features['idx_query'][x.s]
        counts = z.additional_features['counts'][x.s]

    inserted_feat = F.spvoxelize(z.F, idx_query, counts)
    new_tensor = SparseTensor(inserted_feat, x.C, x.s)
    new_tensor.cmaps = x.cmaps
    new_tensor.kmaps = x.kmaps

    return new_tensor