示例#1
0
文件: hpflow.py 项目: juhongm999/hpf
    def __init__(self, backbone, hyperpixel_ids, benchmark, device):
        r"""Constructor for Hyperpixel Flow framework"""

        # Feature extraction network initialization.
        if backbone == 'resnet50':
            self.backbone = resnet.resnet50(pretrained=True).to(device)
            nbottlenecks = [3, 4, 6, 3]
        elif backbone == 'resnet101':
            self.backbone = resnet.resnet101(pretrained=True).to(device)
            nbottlenecks = [3, 4, 23, 3]
        elif backbone == 'fcn101':
            self.backbone = gcv.models.get_fcn_resnet101_voc(
                pretrained=True).to(device).pretrained
            nbottlenecks = [3, 4, 23, 3]
        else:
            raise Exception('Unavailable backbone: %s' % backbone)
        self.bottleneck_ids = reduce(
            add, list(map(lambda x: list(range(x)), nbottlenecks)))
        self.layer_ids = reduce(add, [[i + 1] * x
                                      for i, x in enumerate(nbottlenecks)])
        self.backbone.eval()

        # Hyperpixel id and pre-computed jump and receptive field size initialization
        # Reference: https://fomoro.com/research/article/receptive-field-calculator
        # (the jump and receptive field sizes for 'fcn101' are heuristic values)
        self.hyperpixel_ids = util.parse_hyperpixel(hyperpixel_ids)
        self.jsz = torch.tensor([4, 4, 4, 4, 8, 8, 8, 8, 16, 16]).to(device)
        self.rfsz = torch.tensor([11, 19, 27, 35, 43, 59, 75, 91, 107,
                                  139]).to(device)

        # Miscellaneous
        self.hsfilter = geometry.gaussian2d(7).to(device)
        self.device = device
        self.benchmark = benchmark
示例#2
0
    def __init__(self, backbone='resnet50'):
        super().__init__()
        if backbone == 'resnet18':
            backbone = resnet18(pretrained=True)
            self.out_channels = [256, 512, 512, 256, 256, 128]
        elif backbone == 'resnet34':
            backbone = resnet34(pretrained=True)
            self.out_channels = [256, 512, 512, 256, 256, 256]
        elif backbone == 'resnet50':
            backbone = resnet50(pretrained=True)
            self.out_channels = [1024, 512, 512, 256, 256, 256]
        elif backbone == 'resnet101':
            backbone = resnet101(pretrained=True)
            self.out_channels = [1024, 512, 512, 256, 256, 256]
        else:  # backbone == 'resnet152':
            backbone = resnet152(pretrained=True)
            self.out_channels = [1024, 512, 512, 256, 256, 256]


        self.feature_extractor = nn.Sequential(*list(backbone.children())[:7])

        conv4_block1 = self.feature_extractor[-1][0]

        conv4_block1.conv1.stride = (1, 1)
        conv4_block1.conv2.stride = (1, 1)
        conv4_block1.downsample[0].stride = (1, 1)
示例#3
0
    def __init__(self,
                 pretrained=True,
                 output_channel=1,
                 rate=1,
                 fixed_feature_weights=False):
        super(SANet, self).__init__()
        self.output_channel = output_channel

        resnet = resnet101(pretrained=pretrained)

        # Freeze resnet weights
        if fixed_feature_weights:
            for p in resnet.parameters():
                p.requires_grad = False

        c = [i // rate for i in [64, 256, 512, 1024, 2048]]

        self.layer0 = nn.Sequential(resnet.conv1, resnet.bn1, resnet.relu)
        self.layer1 = nn.Sequential(resnet.maxpool, resnet.layer1)
        self.layer2 = nn.Sequential(resnet.layer2)
        self.layer3 = nn.Sequential(resnet.layer3)
        self.layer4 = nn.Sequential(resnet.layer4)

        # previous layers
        self.mid1 = conv_bn(c[0], c[0], 1)
        self.mid2 = conv_bn(c[1], c[1], 1)
        self.mid3 = conv_bn(c[2], c[2], 1)
        self.mid4 = conv_bn(c[3], c[3], 1)

        # Smooth layers
        self.smooth1 = conv_bn(c[4], c[3], 1)
        self.smooth2 = conv_bn(c[3], c[2], 1)
        self.smooth3 = conv_bn(c[2], c[1], 1)
        self.smooth4 = conv_bn(c[0] * 2, c[0], 1)
        self.smooth5 = conv(c[0] * 4, c[0] * 2, 1)

        self.upconv1 = conv_bn(c[4], c[3], 1)
        self.upconv2 = conv_bn(c[3], c[2], 1)
        self.upconv3 = conv_bn(c[2], c[1], 1)
        self.upconv4 = conv_bn(c[1], c[0], 1)
        self.upconv5 = conv(c[0] * 2, c[0], 1)

        self.att1 = SAB(c[3], c[3])
        self.att2 = SAB(c[2], c[2])
        self.att3 = SAB(c[1], c[1])
        self.att4 = SAB(c[0], c[0])

        # upshuffle layers
        self.up1 = upshuffle(c[3], c[0], 8)
        self.up2 = upshuffle(c[2], c[0], 4)
        self.up3 = upshuffle(c[1], c[0], 2)

        # Context block
        self.gc2 = ContextBlock(c[1], 1 / 4)
        self.gc3 = ContextBlock(c[2], 1 / 4)
        self.gc4 = ContextBlock(c[3], 1 / 4)
        self.gc5 = ContextBlock(c[4], 1 / 4)

        # Depth prediction
        self.predict = predict(c[0], self.output_channel)
示例#4
0
    def __init__(self, backbone, use_original_imgsize):
        super(HypercorrSqueezeNetwork, self).__init__()

        # 1. Backbone network initialization
        self.backbone_type = backbone
        self.use_original_imgsize = use_original_imgsize
        if backbone == 'vgg16':
            self.backbone = vgg.vgg16(pretrained=True)
            self.feat_ids = [17, 19, 21, 24, 26, 28, 30]
            self.extract_feats = extract_feat_vgg
            nbottlenecks = [2, 2, 3, 3, 3, 1]
        elif backbone == 'resnet50':
            self.backbone = resnet.resnet50(pretrained=True)
            self.feat_ids = list(range(4, 17))
            self.extract_feats = extract_feat_res
            nbottlenecks = [3, 4, 6, 3]
        elif backbone == 'resnet101':
            self.backbone = resnet.resnet101(pretrained=True)
            self.feat_ids = list(range(4, 34))
            self.extract_feats = extract_feat_res
            nbottlenecks = [3, 4, 23, 3]
        else:
            raise Exception('Unavailable backbone: %s' % backbone)

        self.bottleneck_ids = reduce(
            add, list(map(lambda x: list(range(x)), nbottlenecks)))
        self.lids = reduce(add,
                           [[i + 1] * x for i, x in enumerate(nbottlenecks)])
        self.stack_ids = torch.tensor(
            self.lids).bincount().__reversed__().cumsum(dim=0)[:3]
        self.backbone.eval()
        self.hpn_learner = HPNLearner(list(reversed(nbottlenecks[-3:])))
        self.cross_entropy_loss = nn.CrossEntropyLoss()
def create_dataset(split):

    batch_size = 50

    resnet = resnet101(True).cuda()
    resnet.eval()
    resnet.forward = forward.__get__(resnet, ResNet)

    dataloader = DataLoader(CLEVR(sys.argv[1], split),
                            batch_size=batch_size,
                            num_workers=4)

    size = len(dataloader)

    print(split, 'total', size * batch_size)

    f = h5py.File('data/{}_features.hdf5'.format(split), 'w', libver='latest')
    dset = f.create_dataset('data', (size * batch_size, 1024, 14, 14),
                            dtype='f4')

    with torch.no_grad():
        for i, image in tqdm(enumerate(dataloader)):
            image = image.to(device)
            features = resnet(image).detach().cpu().numpy()
            dset[i * batch_size:(i + 1) * batch_size] = features

    f.close()
示例#6
0
 def __init__(self, mode_name='wide_resnet50_2'):
     super(Backbone, self).__init__()
     assert mode_name in ('resnet18', 'resnet34', 'resnet50', 'resnet101',
                          'resnet152', 'resnext50_32x4d',
                          'resnext101_32x8d', 'wide_resnet50_2',
                          'wide_resnet101_2')
     if mode_name == 'resnet18':
         self.res_back_bone = resnet.resnet18()
     elif mode_name == 'resnet34':
         self.res_back_bone = resnet.resnet34()
     elif mode_name == 'resnet50':
         self.res_back_bone = resnet.resnet50()
     elif mode_name == 'resnet101':
         self.res_back_bone = resnet.resnet101()
     elif mode_name == 'resnet152':
         self.res_back_bone = resnet.resnet152()
     elif mode_name == 'resnext50_32x4d':
         self.res_back_bone = resnet.resnext50_32x4d()
     elif mode_name == 'resnext101_32x8d':
         self.res_back_bone = resnet.resnext101_32x8d()
     elif mode_name == 'wide_resnet50_2':
         self.res_back_bone = resnet.wide_resnet50_2()
     else:
         self.res_back_bone = resnet.wide_resnet101_2()
     self.backbone = nn.Module()
     layer0 = nn.Sequential(*list(self.res_back_bone.children())[:4])
     self.backbone.add_module('layer0', layer0)
     self.backbone.add_module('layer1', self.res_back_bone.layer1)
     self.backbone.add_module('layer2', self.res_back_bone.layer2)
     self.backbone.add_module('layer3', self.res_back_bone.layer3)
     self.backbone.add_module('layer4', self.res_back_bone.layer4)
示例#7
0
文件: model.py 项目: shizacat/ssd-mod
    def __init__(self, backbone="resnet50", backbone_path=None):
        super().__init__()
        if backbone == "resnet18":
            backbone = resnet18(pretrained=not backbone_path)
            self.out_channels = [256, 512, 512, 256, 256, 128]
        elif backbone == "resnet34":
            backbone = resnet34(pretrained=not backbone_path)
            self.out_channels = [256, 512, 512, 256, 256, 256]
        elif backbone == "resnet50":
            backbone = resnet50(pretrained=not backbone_path)
            self.out_channels = [1024, 512, 512, 256, 256, 256]
        elif backbone == "resnet101":
            backbone = resnet101(pretrained=not backbone_path)
            self.out_channels = [1024, 512, 512, 256, 256, 256]
        else:
            backbone = resnet152(pretrained=not backbone_path)
            self.out_channels = [1024, 512, 512, 256, 256, 256]
        if backbone_path:
            backbone.load_state_dict(torch.load(backbone_path))

        self.feature_extractor = nn.Sequential(*list(backbone.children())[:7])

        conv4_block1 = self.feature_extractor[-1][0]

        conv4_block1.conv1.stride = (1, 1)
        conv4_block1.conv2.stride = (1, 1)
        conv4_block1.downsample[0].stride = (1, 1)
示例#8
0
    def __init__(self, name="resnet50", pretrain=True):
        super().__init__()

        if name == "resnet50":
            base_net = resnet.resnet50(pretrained=False)
        elif name == "resnet101":
            base_net = resnet.resnet101(pretrained=False)
        else:
            print(" base model is not support !")

        if pretrain:
            print("load the {} weight from ./cache".format(name))
            base_net.load_state_dict(
                model_zoo.load_url(model_urls["resnet50"],
                                   model_dir="../cache"))
        # print(base_net)
        self.stage1 = nn.Sequential(base_net.conv1, base_net.bn1,
                                    base_net.relu, base_net.maxpool)
        self.stage2 = base_net.layer1
        self.stage3 = base_net.layer2
        self.stage4 = base_net.layer3
        self.stage5 = base_net.layer4
        self.up2 = nn.ConvTranspose2d(64,
                                      64,
                                      kernel_size=4,
                                      stride=2,
                                      padding=1)
    def __init__(self, backbone, num_classes=21):
        super().__init__()
        if backbone == 'resnet-18':
            self.backbone = resnet18()
            self.in_channel = [512, 128, 64, 64]
            self.out_channel = [256, 64, 64, 64]
        elif backbone == 'resnet-34':
            self.backbone = resnet34()
            self.in_channel = [512, 128, 64, 64]
            self.out_channel = [256, 64, 64, 64]
        elif backbone == 'resnet-50':
            self.backbone = resnet50()
            self.in_channel = [2048, 512, 256, 64]
            self.out_channel = [1024, 256, 64, 64]
        elif backbone == 'resnet-101':
            self.backbone = resnet101()
            self.in_channel = [2048, 512, 256, 64]
            self.out_channel = [1024, 256, 64, 64]
        elif backbone == 'resnet-152':
            self.backbone = resnet152()
            self.in_channel = [2048, 512, 256, 64]
            self.out_channel = [1024, 256, 64, 64]
        else:
            raise NotImplementedError

        self.encoder = Encoder(self.backbone)
        self.decoder = Decoder(self.in_channel, self.out_channel)
        self.out = nn.Conv2d(64, num_classes, 1)

        self._init_weight()
示例#10
0
    def __init__(self, backbone='resnet50', pretrained_path=None):
        super().__init__()
        if backbone == 'resnet18':
            backbone = resnet18(pretrained=not pretrained_path)
            self.final_out_channels = 256
            self.low_level_inplanes = 64
        elif backbone == 'resnet34':
            backbone = resnet34(pretrained=not pretrained_path)
            self.final_out_channels = 256
            self.low_level_inplanes = 64
        elif backbone == 'resnet50':
            backbone = resnet50(pretrained=not pretrained_path)
            self.final_out_channels = 1024
            self.low_level_inplanes = 256
        elif backbone == 'resnet101':
            backbone = resnet101(pretrained=not pretrained_path)
            self.final_out_channels = 1024
            self.low_level_inplanes = 256
        else:  # backbone == 'resnet152':
            backbone = resnet152(pretrained=not pretrained_path)
            self.final_out_channels = 1024
            self.low_level_inplanes = 256
        if pretrained_path:
            backbone.load_state_dict(torch.load(pretrained_path))


        self.early_extractor = nn.Sequential(*list(backbone.children())[:5])
        self.later_extractor = nn.Sequential(*list(backbone.children())[5:7])

        conv4_block1 = self.later_extractor[-1][0]

        conv4_block1.conv1.stride = (1, 1)
        conv4_block1.conv2.stride = (1, 1)
        conv4_block1.downsample[0].stride = (1, 1)
def main():
    device = torch.device(
        'cuda:0' if args.gpu and torch.cuda.is_available() else 'cpu')
    dataset_dir = '../' + args.dataset_dir + '/Data/RGB/'
    dataloader, dataset_size = load_data(dataset_dir, args.batch_size,
                                         args.num_workers)

    model = resnet101(num_classes=51)
    model.to(device)
    model.load_state_dict(torch.load(args.model_path, map_location='cpu'))
    vis_results = visualize(model, dataloader, dataset_size, device,
                            args.selected_layer)

    layer_output = vis_results[0][0]
    print(layer_output.shape)
    num_features = layer_output.shape[0]
    num_row = int(num_features**0.5)
    for i in range(num_features):
        feature = layer_output[i].data.numpy()
        feature = 1.0 / (1 + np.exp(-1 * feature))
        feature = np.round(feature * 255)
        ax = plt.subplot(num_row, num_row, i + 1)
        ax.axis('off')
        plt.imshow(feature, cmap=plt.cm.gray)
    plt.subplots_adjust(wspace=0.2, hspace=0)
    plt.savefig('{0}.jpg'.format(args.selected_layer))
示例#12
0
 def __init__(self, pretrained=None):
     super(HeadCommon, self).__init__()
     self.config = ConfigParser()
     config_path = os.path.abspath(
         os.path.join(__file__, "../../", "config.ini"))
     assert os.path.exists(config_path), "config.ini not exists!"
     self.config.read(config_path)
     self.backbone_type = self.config['BACKBONE']['BACKBONE_TYPE']
     _pretrained = True if pretrained is not None else False
     assert self.backbone_type in ['resnet', 'vgg16']
     if self.backbone_type == 'resnet':
         resnet_layer = int(self.config['BACKBONE']['RESNET_LAYER'])
         assert resnet_layer in [18, 34, 50, 101, 152]
         if resnet_layer == 18:
             _resnet = resnet.resnet18(_pretrained)
         elif resnet_layer == 34:
             _resnet = resnet.resnet34(_pretrained)
         elif resnet_layer == 50:
             _resnet = resnet.resnet50(_pretrained)
         elif resnet_layer == 101:
             _resnet = resnet.resnet101(_pretrained)
         else:
             _resnet = resnet.resnet152(_pretrained)
         # using resnet_c5 the last bottle neck of resnet
         _resnet.layer4[0].conv2.stride = (1, 1)
         _resnet.layer4[0].downsample[0].stride = (1, 1)
         self.resnet_c5 = _resnet.layer4
         self.resnet_c5_avg = _resnet.avgpool
     elif self.backbone_type == 'vgg16':
         assert not bool(int(self.config['HEAD']['MASK_HEAD_ON'])), (
             "When mask head on, not support vgg16 backbone.")
         vgg = vgg16(pretrained=True)
         self.vgg_fc = nn.Sequential(
             *list(vgg.classifier._modules.values())[:-1])
示例#13
0
    def __init__(self, backbone='resnet50', backbone_path=None):
        super().__init__()
        if backbone == 'resnet18':
            backbone = resnet18(pretrained=not backbone_path)
            self.out_channels = [256, 512, 512, 256, 256, 128]
        elif backbone == 'resnet34':
            backbone = resnet34(pretrained=not backbone_path)
            self.out_channels = [256, 512, 512, 256, 256, 256]
        elif backbone == 'resnet50':
            backbone = resnet50(pretrained=not backbone_path)
            self.out_channels = [1024, 512, 512, 256, 256, 256]
        elif backbone == 'resnet101':
            backbone = resnet101(pretrained=not backbone_path)
            self.out_channels = [1024, 512, 512, 256, 256, 256]
        else:  # backbone == 'resnet152':
            backbone = resnet152(pretrained=not backbone_path)
            self.out_channels = [1024, 512, 512, 256, 256, 256]
        if backbone_path:
            backbone.load_state_dict(torch.load(backbone_path))

        for name, parameter in backbone.named_parameters():
            if 'layer2' not in name and 'layer3' not in name and 'layer4' not in name:
                parameter.requires_grad_(False)
        self.feature_extractor = nn.Sequential(*list(backbone.children())[:7])

        conv4_block1 = self.feature_extractor[-1][0]

        conv4_block1.conv1.stride = (1, 1)
        conv4_block1.conv2.stride = (1, 1)
        conv4_block1.downsample[0].stride = (1, 1)
示例#14
0
    def __init__(self, resnet_layer, pretrained=None):
        super(ResNet, self).__init__()
        assert resnet_layer in [18, 34, 50, 101, 152]
        pretrained = True if pretrained is not None else False
        if resnet_layer == 18:
            self.resnet = resnet.resnet18(pretrained)
        elif resnet_layer == 34:
            self.resnet = resnet.resnet34(pretrained)
        elif resnet_layer == 50:
            self.resnet = resnet.resnet50(pretrained)
        elif resnet_layer == 101:
            self.resnet = resnet.resnet101(pretrained)
        else:
            self.resnet = resnet.resnet152(pretrained)

        # fix layer grad
        for p in self.resnet.conv1.parameters():
            p.requires_grad = False
        for p in self.resnet.layer1.parameters():
            p.requires_grad = False
        for p in self.resnet.layer2.parameters():
            p.requires_grad = True
        for p in self.resnet.layer3.parameters():
            p.requires_grad = True

        # fix batch norm layer
        for m in self.resnet.modules():
            if isinstance(m, nn.BatchNorm2d):
                for p in m.parameters():
                    p.requires_grad = False
    def __init__(self, pretrained=True):
        super(I2D, self).__init__()

        resnet = resnet101(pretrained=pretrained)

        self.layer0 = nn.Sequential(resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool)
        self.layer1 = nn.Sequential(resnet.layer1) # 256
        self.layer2 = nn.Sequential(resnet.layer2) # 512
        self.layer3 = nn.Sequential(resnet.layer3) # 1024
        self.layer4 = nn.Sequential(resnet.layer4) # 2048

        # Top layer
        self.toplayer = nn.Conv2d(2048, 256, kernel_size=1, stride=1, padding=0)  # Reduce channels

        # Lateral layers
        self.latlayer1 = nn.Conv2d(1024, 256, kernel_size=1, stride=1, padding=0)
        self.latlayer2 = nn.Conv2d( 512, 256, kernel_size=1, stride=1, padding=0)
        self.latlayer3 = nn.Conv2d( 256, 256, kernel_size=1, stride=1, padding=0)

        # Smooth layers
        self.smooth1 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
        self.smooth2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
        self.smooth3 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
        
        # Depth prediction
        self.predict1 = smooth(256, 64)
        self.predict2 = predict(64, 1)
示例#16
0
    def __init__(self, pretrained=True, fixed_feature_weights=False):
        super(I2D, self).__init__()

        resnet = resnet101(pretrained=pretrained)

        # Freeze those weights
        if fixed_feature_weights:
            for p in resnet.parameters():
                p.requires_grad = False

        self.layer0 = nn.Sequential(resnet.conv1, resnet.bn1, resnet.relu,
                                    resnet.maxpool)
        self.layer1 = nn.Sequential(resnet.layer1)
        self.layer2 = nn.Sequential(resnet.layer2)
        self.layer3 = nn.Sequential(resnet.layer3)
        self.layer4 = nn.Sequential(resnet.layer4)

        # Top layer
        self.toplayer = nn.Conv2d(2048,
                                  256,
                                  kernel_size=1,
                                  stride=1,
                                  padding=0)  # Reduce channels

        # Lateral layers
        self.latlayer1 = nn.Conv2d(1024,
                                   256,
                                   kernel_size=1,
                                   stride=1,
                                   padding=0)
        self.latlayer2 = nn.Conv2d(512,
                                   256,
                                   kernel_size=1,
                                   stride=1,
                                   padding=0)
        self.latlayer3 = nn.Conv2d(256,
                                   256,
                                   kernel_size=1,
                                   stride=1,
                                   padding=0)

        # Smooth layers
        self.smooth1 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
        self.smooth2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
        self.smooth3 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)

        # Aggregate layers
        self.agg1 = agg_node(256, 128)
        self.agg2 = agg_node(256, 128)
        self.agg3 = agg_node(256, 128)
        self.agg4 = agg_node(256, 128)

        # Upshuffle layers
        self.up1 = upshuffle(128, 128, 8)
        self.up2 = upshuffle(128, 128, 4)
        self.up3 = upshuffle(128, 128, 2)

        # Depth prediction
        self.predict1 = smooth(512, 128)
        self.predict2 = predict(128, 1)
示例#17
0
 def get(cls, args):
     model = ResNet3D(Bottleneck3D, [3, 8, 36, 3])  # 101
     if args.pretrained:
         from torchvision.models.resnet import resnet101
         model2d = resnet101(pretrained=True)
         model.load_2d(model2d)
     return model
def get_classification_model(classifier_name='resnet18',
                             num_classes=1000,
                             pretrained=True):
    """
    Get the detection model
    :param pretrained:
    :param classifier_name:
    :param num_classes:
    :return:
    """
    if classifier_name == 'resnet18':
        model = resnet18(pretrained, num_classes=num_classes)

    elif classifier_name == 'resnet34':
        model = resnet34(pretrained, num_classes=num_classes)

    elif classifier_name == 'resnet50':
        model = resnet50(pretrained, num_classes=num_classes)

    elif classifier_name == 'resnet101':
        model = resnet101(pretrained, num_classes=num_classes)

    elif classifier_name == 'resnet152':
        model = resnet152(pretrained, num_classes=num_classes)

    else:
        raise ValueError('Unsupported resnet type.')

    return model
示例#19
0
    def __init__(self, resnet_layer, pretrained=None):
        super(ResNetFPN, self).__init__()
        self.lateral_conv1 = nn.Conv2d(2048, 256, kernel_size=1)
        self.lateral_conv2 = nn.Conv2d(1024, 256, kernel_size=1)
        self.lateral_conv3 = nn.Conv2d(512, 256, kernel_size=1)
        self.lateral_conv4 = nn.Conv2d(256, 256, kernel_size=1)

        self.anti_aliasing_conv1 = nn.Conv2d(256,
                                             256,
                                             kernel_size=3,
                                             padding=1)
        self.anti_aliasing_conv2 = nn.Conv2d(256,
                                             256,
                                             kernel_size=3,
                                             padding=1)
        self.anti_aliasing_conv3 = nn.Conv2d(256,
                                             256,
                                             kernel_size=3,
                                             padding=1)
        self._init_parameters()

        assert resnet_layer in [18, 34, 50, 101, 152]
        pretrained = True if pretrained is not None else False
        if resnet_layer == 18:
            self.resnet = resnet.resnet18(pretrained)
        elif resnet_layer == 34:
            self.resnet = resnet.resnet34(pretrained)
        elif resnet_layer == 50:
            self.resnet = resnet.resnet50(pretrained)
        elif resnet_layer == 101:
            self.resnet = resnet.resnet101(pretrained)
        elif resnet_layer == 152:
            self.resnet = resnet.resnet152(pretrained)
示例#20
0
def load_resnet():

    model = resnet101(pretrained=True)

    del model.layer4
    del model.avgpool
    del model.fc
    return model
示例#21
0
    def __init__(self):
        super(MGN_PTL, self).__init__()
        num_classes = opt.classn
        feats = 256
        self.val = False
        self.ptl = PTL()
        self.ptl.init_param()
        if opt.backbone == 'resnet50':
            self.backbone = resnet50(pretrained=True)
        elif opt.backbone == 'resnet101':
            self.backbone = resnet101(pretrained=True)
        res_conv4 = nn.Sequential(*self.backbone.layer3[1:])
        res_g_conv5 = self.backbone.layer4
        res_p_conv5 = nn.Sequential(
            Bottleneck(1024,
                       512,
                       downsample=nn.Sequential(
                           nn.Conv2d(1024, 2048, 1, bias=False),
                           nn.BatchNorm2d(2048))), Bottleneck(2048, 512),
            Bottleneck(2048, 512))
        res_p_conv5.load_state_dict(self.backbone.layer4.state_dict())

        self.p1 = nn.Sequential(copy.deepcopy(res_conv4),
                                copy.deepcopy(res_g_conv5))
        self.p2 = nn.Sequential(copy.deepcopy(res_conv4),
                                copy.deepcopy(res_p_conv5))
        self.p3 = nn.Sequential(copy.deepcopy(res_conv4),
                                copy.deepcopy(res_p_conv5))

        self.maxpool_zg_p1 = nn.MaxPool2d(kernel_size=(12, 4))
        self.maxpool_zg_p2 = nn.MaxPool2d(kernel_size=(24, 8))
        self.maxpool_zg_p3 = nn.MaxPool2d(kernel_size=(24, 8))
        self.maxpool_zp2 = nn.MaxPool2d(kernel_size=(12, 8))
        self.maxpool_zp3 = nn.MaxPool2d(kernel_size=(8, 8))

        self.reduction = nn.Sequential(
            nn.Conv2d(2048 + 128, feats, 1, bias=True), nn.BatchNorm2d(feats),
            nn.ReLU())

        self._init_reduction(self.reduction)

        self.fc_id_2048_0 = nn.Linear(feats, num_classes)
        self.fc_id_2048_1 = nn.Linear(feats, num_classes)
        self.fc_id_2048_2 = nn.Linear(feats, num_classes)
        self.fc_id_256_1_0 = nn.Linear(feats, num_classes)
        self.fc_id_256_1_1 = nn.Linear(feats, num_classes)
        self.fc_id_256_2_0 = nn.Linear(feats, num_classes)
        self.fc_id_256_2_1 = nn.Linear(feats, num_classes)
        self.fc_id_256_2_2 = nn.Linear(feats, num_classes)

        self._init_fc(self.fc_id_2048_0)
        self._init_fc(self.fc_id_2048_1)
        self._init_fc(self.fc_id_2048_2)
        self._init_fc(self.fc_id_256_1_0)
        self._init_fc(self.fc_id_256_1_1)
        self._init_fc(self.fc_id_256_2_0)
        self._init_fc(self.fc_id_256_2_1)
        self._init_fc(self.fc_id_256_2_2)
    def __init__(self):

        super(ResNet, self).__init__()

        cnn = resnet101(pretrained=True)
        self.cnn = cnn
        self.features = nn.Sequential(cnn.conv1, cnn.bn1, cnn.relu,
                                      cnn.maxpool, cnn.layer1, cnn.layer2,
                                      cnn.layer3, cnn.layer4)
示例#23
0
def resnet101(pretrained=False, **kwargs):
    """Constructs a ResNet-101 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet_C5(Bottleneck, [3, 4, 23, 3], **kwargs)
    model_full = resnet.resnet101(pretrained=True)
    if pretrained:
        model.load_pretrained(model_full)
    return model
示例#24
0
 def _get_backbone(self, backbone):
     if backbone == 'resnet-101':
         resnet = resnet101(pretrained=True)
         extractor = nn.Sequential(resnet.conv1, resnet.bn1, resnet.relu,
                                   resnet.maxpool, resnet.layer1,
                                   resnet.layer2, resnet.layer3,
                                   resnet.layer4)
         return extractor
     else:
         raise NotImplementedError
示例#25
0
def test_gflops():
    from fblib.util.model_resources.flops import compute_gflops
    from torchvision.models import resnet

    x50 = resnext101_32x4d(pretrained=False)

    print('GFLOPS for ResNeXt: {}'.format(compute_gflops(x50)))

    res50 = resnet.resnet101(pretrained=False)
    print('GFLOPS for ResNet: {}'.format(compute_gflops(res50)))
示例#26
0
 def __init__(self, return_layers=None):
     model = resnet101(pretrained=True,
                       replace_stride_with_dilation=[False, True, True])
     return_layers = {
         'layer1': 'layer1',
         'layer2': 'layer2',
         'layer3': 'layer3',
         'layer4': 'layer4',
     } or return_layers
     super(ResNet101, self).__init__(model, return_layers)
示例#27
0
def _resnet101(msda='fmix', pretrained=False, *args, **kwargs):
    from torchvision.models.resnet import resnet101
    model = resnet101(*args, **kwargs)

    if pretrained:
        state = load_state_dict_from_url(
            f'http://marc.ecs.soton.ac.uk/pytorch-models/imagenet/resnet101/imagenet_resnet101_{msda}.pt',
            progress=True)
        model.load_state_dict(state)

    return model
示例#28
0
 def get_backbone(self, name, pretrained):
     if name == "resne34":
         return resnet34(pretrained=pretrained)
     elif name == "resnet50":
         return resnet50(pretrained=pretrained)
     elif name == "resnet101":
         return resnet101(pretrained=pretrained)
     elif name == "resnet152":
         return resnet152(pretrained=pretrained)
     else:
         return resnet18(pretrained=pretrained) #default
示例#29
0
def get_base_model(name):
    if name == "resnet18":
        return resnet.resnet18()
    if name == "resnet34":
        return resnet.resnet34()
    if name == "resnet50":
        return resnet.resnet50()
    if name == "resnet101":
        return resnet.resnet101()
    if name == "resnet152":
        return resnet.resnet152()
def resnet101(pretrained=False, fixed_feature=True):
    """ "ResNet-101 model from torchvision's resnet model.

    :param pretrained: if true, return a model pretrained on ImageNet
    :param fixed_feature: if true and pretrained is true, model features are fixed while training.
    """
    from torchvision.models.resnet import resnet101
    model = resnet101(pretrained)

    ff = True if pretrained and fixed_feature else False
    return _ResNet(model, ff)
示例#31
0
def create_model(model_name, num_classes=1000, pretrained=False, **kwargs):
    if 'test_time_pool' in kwargs:
        test_time_pool = kwargs.pop('test_time_pool')
    else:
        test_time_pool = True
    if 'extra' in kwargs:
        extra = kwargs.pop('extra')
    else:
        extra = True
    if model_name == 'dpn68':
        model = dpn68(
            num_classes=num_classes, pretrained=pretrained, test_time_pool=test_time_pool)
    elif model_name == 'dpn68b':
        model = dpn68b(
            num_classes=num_classes, pretrained=pretrained, test_time_pool=test_time_pool)
    elif model_name == 'dpn92':
        model = dpn92(
            num_classes=num_classes, pretrained=pretrained, test_time_pool=test_time_pool, extra=extra)
    elif model_name == 'dpn98':
        model = dpn98(
            num_classes=num_classes, pretrained=pretrained, test_time_pool=test_time_pool)
    elif model_name == 'dpn131':
        model = dpn131(
            num_classes=num_classes, pretrained=pretrained, test_time_pool=test_time_pool)
    elif model_name == 'dpn107':
        model = dpn107(
            num_classes=num_classes, pretrained=pretrained, test_time_pool=test_time_pool)
    elif model_name == 'resnet18':
        model = resnet18(num_classes=num_classes, pretrained=pretrained, **kwargs)
    elif model_name == 'resnet34':
        model = resnet34(num_classes=num_classes, pretrained=pretrained, **kwargs)
    elif model_name == 'resnet50':
        model = resnet50(num_classes=num_classes, pretrained=pretrained, **kwargs)
    elif model_name == 'resnet101':
        model = resnet101(num_classes=num_classes, pretrained=pretrained, **kwargs)
    elif model_name == 'resnet152':
        model = resnet152(num_classes=num_classes, pretrained=pretrained, **kwargs)
    elif model_name == 'densenet121':
        model = densenet121(num_classes=num_classes, pretrained=pretrained, **kwargs)
    elif model_name == 'densenet161':
        model = densenet161(num_classes=num_classes, pretrained=pretrained, **kwargs)
    elif model_name == 'densenet169':
        model = densenet169(num_classes=num_classes, pretrained=pretrained, **kwargs)
    elif model_name == 'densenet201':
        model = densenet201(num_classes=num_classes, pretrained=pretrained, **kwargs)
    elif model_name == 'inception_v3':
        model = inception_v3(
            num_classes=num_classes, pretrained=pretrained, transform_input=False, **kwargs)
    else:
        assert False, "Unknown model architecture (%s)" % model_name
    return model