def __init__(self, crop_size, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), hflip_prob=0.5, auto_augment_policy=None, random_erase_prob=0.0): trans = [transforms.RandomResizedCrop(crop_size)] if hflip_prob > 0: trans.append(transforms.RandomHorizontalFlip(hflip_prob)) if auto_augment_policy is not None: if auto_augment_policy == "ra": trans.append(autoaugment.RandAugment()) elif auto_augment_policy == "ta_wide": trans.append(autoaugment.TrivialAugmentWide()) else: aa_policy = autoaugment.AutoAugmentPolicy(auto_augment_policy) trans.append(autoaugment.AutoAugment(policy=aa_policy)) trans.extend([ transforms.ToTensor(), transforms.Normalize(mean=mean, std=std), ]) if random_erase_prob > 0: trans.append(transforms.RandomErasing(p=random_erase_prob)) self.transforms = transforms.Compose(trans)
def __init__( self, crop_size, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), interpolation=InterpolationMode.BILINEAR, hflip_prob=0.5, auto_augment_policy=None, random_erase_prob=0.0, ): trans = [transforms.RandomResizedCrop(crop_size, interpolation=interpolation)] if hflip_prob > 0: trans.append(transforms.RandomHorizontalFlip(hflip_prob)) if auto_augment_policy is not None: if auto_augment_policy == "ra": trans.append(autoaugment.RandAugment(interpolation=interpolation)) elif auto_augment_policy == "ta_wide": trans.append(autoaugment.TrivialAugmentWide(interpolation=interpolation)) else: aa_policy = autoaugment.AutoAugmentPolicy(auto_augment_policy) trans.append(autoaugment.AutoAugment(policy=aa_policy, interpolation=interpolation)) trans.extend( [ transforms.PILToTensor(), transforms.ConvertImageDtype(torch.float), transforms.Normalize(mean=mean, std=std), ] ) if random_erase_prob > 0: trans.append(transforms.RandomErasing(p=random_erase_prob)) self.transforms = transforms.Compose(trans)