示例#1
0
def get_train_transforms(img_size: int) -> Compose:
    """Returns data transformations/augmentations for train dataset.
    
    Args:
        img_size: The resolution of the input image (img_size x img_size)
    """
    return Compose([
        RandomApply([
            ColorJitter(brightness=0.3, contrast=0.01, saturation=0.01, hue=0),
            RandomAffine(0.1,
                         translate=(0.04, 0.04),
                         scale=(0.04, 0.04),
                         shear=0.01,
                         resample=2),
            #Grayscale(num_output_channels=3),
            #RandomCrop(30),
            RandomPerspective(0.1)
        ]),
        Resize([img_size, img_size], interpolation=3),
        ToTensor(),
        #RandomApply([
        #RandomErasing(p=0.2, scale=(0.02, 0.33), ratio=(0.3, 3.3))
        #]),
        Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])
示例#2
0
    def test_perspective(self):

        from torchvision.transforms import RandomPerspective

        data = [
            self._create_data(26, 34, device=self.device),
            self._create_data(26, 26, device=self.device)
        ]
        for tensor, pil_img in data:

            scripted_tranform = torch.jit.script(F.perspective)

            test_configs = [
                [[[0, 0], [33, 0], [33, 25], [0, 25]],
                 [[3, 2], [32, 3], [30, 24], [2, 25]]],
                [[[3, 2], [32, 3], [30, 24], [2, 25]],
                 [[0, 0], [33, 0], [33, 25], [0, 25]]],
                [[[3, 2], [32, 3], [30, 24], [2, 25]],
                 [[5, 5], [30, 3], [33, 19], [4, 25]]],
            ]
            n = 10
            test_configs += [
                RandomPerspective.get_params(pil_img.size[0], pil_img.size[1],
                                             i / n) for i in range(n)
            ]

            for r in [
                    0,
            ]:
                for spoints, epoints in test_configs:
                    out_pil_img = F.perspective(pil_img,
                                                startpoints=spoints,
                                                endpoints=epoints,
                                                interpolation=r)
                    out_pil_tensor = torch.from_numpy(
                        np.array(out_pil_img).transpose((2, 0, 1)))

                    for fn in [F.perspective, scripted_tranform]:
                        out_tensor = fn(tensor,
                                        startpoints=spoints,
                                        endpoints=epoints,
                                        interpolation=r).cpu()

                        num_diff_pixels = (out_tensor !=
                                           out_pil_tensor).sum().item() / 3.0
                        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[
                            -1] / out_tensor.shape[-2]
                        # Tolerance : less than 5% of different pixels
                        self.assertLess(ratio_diff_pixels,
                                        0.05,
                                        msg="{}: {}\n{} vs \n{}".format(
                                            (r, spoints, epoints),
                                            ratio_diff_pixels,
                                            out_tensor[0, :7, :7],
                                            out_pil_tensor[0, :7, :7]))
示例#3
0
    def test_perspective(self):

        from torchvision.transforms import RandomPerspective

        data = [
            self._create_data(26, 34, device=self.device),
            self._create_data(26, 26, device=self.device)
        ]
        scripted_transform = torch.jit.script(F.perspective)

        for tensor, pil_img in data:

            test_configs = [
                [[[0, 0], [33, 0], [33, 25], [0, 25]],
                 [[3, 2], [32, 3], [30, 24], [2, 25]]],
                [[[3, 2], [32, 3], [30, 24], [2, 25]],
                 [[0, 0], [33, 0], [33, 25], [0, 25]]],
                [[[3, 2], [32, 3], [30, 24], [2, 25]],
                 [[5, 5], [30, 3], [33, 19], [4, 25]]],
            ]
            n = 10
            test_configs += [
                RandomPerspective.get_params(pil_img.size[0], pil_img.size[1],
                                             i / n) for i in range(n)
            ]

            for dt in [None, torch.float32, torch.float64, torch.float16]:

                if dt == torch.float16 and torch.device(
                        self.device).type == "cpu":
                    # skip float16 on CPU case
                    continue

                if dt is not None:
                    tensor = tensor.to(dtype=dt)

                self._test_perspective(tensor, pil_img, scripted_transform,
                                       test_configs)

                batch_tensors = self._create_data_batch(26,
                                                        36,
                                                        num_samples=4,
                                                        device=self.device)
                if dt is not None:
                    batch_tensors = batch_tensors.to(dtype=dt)

                for spoints, epoints in test_configs:
                    self._test_fn_on_batch(batch_tensors,
                                           F.perspective,
                                           startpoints=spoints,
                                           endpoints=epoints,
                                           interpolation=0)
示例#4
0
    def test_perspective(self):

        from torchvision.transforms import RandomPerspective

        data = [self._create_data(26, 34, device=self.device), self._create_data(26, 26, device=self.device)]
        scripted_transform = torch.jit.script(F.perspective)

        for tensor, pil_img in data:

            test_configs = [
                [[[0, 0], [33, 0], [33, 25], [0, 25]], [[3, 2], [32, 3], [30, 24], [2, 25]]],
                [[[3, 2], [32, 3], [30, 24], [2, 25]], [[0, 0], [33, 0], [33, 25], [0, 25]]],
                [[[3, 2], [32, 3], [30, 24], [2, 25]], [[5, 5], [30, 3], [33, 19], [4, 25]]],
            ]
            n = 10
            test_configs += [
                RandomPerspective.get_params(pil_img.size[0], pil_img.size[1], i / n) for i in range(n)
            ]

            for dt in [None, torch.float32, torch.float64, torch.float16]:

                if dt == torch.float16 and torch.device(self.device).type == "cpu":
                    # skip float16 on CPU case
                    continue

                if dt is not None:
                    tensor = tensor.to(dtype=dt)

                self._test_perspective(tensor, pil_img, scripted_transform, test_configs)

                batch_tensors = self._create_data_batch(26, 36, num_samples=4, device=self.device)
                if dt is not None:
                    batch_tensors = batch_tensors.to(dtype=dt)

                for spoints, epoints in test_configs:
                    self._test_fn_on_batch(
                        batch_tensors, F.perspective, startpoints=spoints, endpoints=epoints, interpolation=NEAREST
                    )

        # assert changed type warning
        spoints = [[0, 0], [33, 0], [33, 25], [0, 25]]
        epoints = [[3, 2], [32, 3], [30, 24], [2, 25]]
        with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationModes"):
            res1 = F.perspective(tensor, startpoints=spoints, endpoints=epoints, interpolation=2)
            res2 = F.perspective(tensor, startpoints=spoints, endpoints=epoints, interpolation=BILINEAR)
            self.assertTrue(res1.equal(res2))
示例#5
0
def main() -> None:
    size = 500
    n_images = 15000
    fragment_sizes = [
        30, 40, 45, 48, 50, 55, 70, 71, 72, 75, 90, 100, 120, 140, 160, 200
    ]
    angles = [
        5, 6, 7, 8, 10, 15, 16, 17, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100
    ]
    bg_url = 'http://images.cocodataset.org/zips/val2017.zip'
    n_fragments_lo = 3
    n_fragments_hi = 15
    valid = 0.05

    tiles_folder = os.path.join('raw')
    bg_folder = os.path.join('background', 'val2017')
    res_images_path = os.path.join('images')
    res_labels_path = os.path.join('labels')
    classes_path = os.path.join('classes.names')

    download_backgrounds(bg_folder, bg_url)

    name_to_i_class = get_name_to_i_class(classes_path)
    tiles = read_tiles(tiles_folder, name_to_i_class)
    tiles = apply_rotations(tiles, angles)
    tiles = apply_resize(tiles, fragment_sizes)
    tiles = apply_perspective(tiles,
                              RandomPerspective(distortion_scale=0.7, p=0.8))

    data_images = place_fragments_on_bg(tiles,
                                        bg_folder,
                                        n_fragments_lo=n_fragments_lo,
                                        n_fragments_hi=n_fragments_hi,
                                        img_size=size)
    data_images = apply_color_jitter(
        data_images,
        ColorJitter(brightness=0.6, contrast=0.8, saturation=0.8, hue=0.3))
    write(data_images, res_images_path, res_labels_path, n_images)

    write_annotations(folder='data/custom/images',
                      train_path='train.txt',
                      valid_path='valid.txt',
                      n_train=int((1 - valid) * n_images),
                      n_valid=int(valid * n_images))
示例#6
0
 def __getitem__(self, index):
     img = Image.open(self.imgs_path[index])
     if self.train:
         transform = Compose([
             RandomHorizontalFlip(p=0.5),
             RandomPerspective(
                 distortion_scale=0.5,
                 p=0.5,
                 interpolation=3,
             ),
             RandomResizedCrop((414, 414), scale=(0.5, 1)),
             Resize((414, 414)),
             ToTensor(),
             RandomErasing(p=0.3),
         ])
     else:
         transform = Compose([Resize((414, 414)), ToTensor()])
     img = transform(img)
     if self.train:
         label = self.label[index]
         return img, label
     else:
         return img
示例#7
0
def MedT_preprocess_v2_image(img, train, mean=None, std=None) -> torch.Tensor:
    if std is None:
        std = [0.5, 0.5, 0.5]
    if mean is None:
        mean = [0.5, 0.5, 0.5]

    degrees = int(random.random() * 360)
    n, m = random.randint(1, 4), random.randint(2, 15)
    ShearTranslateAug = ShearTranslate(n, m)

    augmentations = [
        RandomHorizontalFlip(),
        RandomRotation(degrees),
        RandomVerticalFlip(),
        RandomPerspective(),
        RandomBrightness(),
        RandomContrast(),
        RandomScale(),
        GaussianBlur(),
        RandomResizedCrop(), ShearTranslateAug
    ]

    augs_num_to_apply = random.randint(1, len(augmentations))
    augs = random.sample(augmentations, augs_num_to_apply)

    if train == True:
        augment = Compose([Image.fromarray, *augs])
        normilize = Compose([ToTensor(), Normalize(mean=mean, std=std)])
        augmented = augment(img)
        preprocced = normilize(augmented).unsqueeze(0)

        return preprocced, augmented

    preprocessing = Compose([ToTensor(), Normalize(mean=mean, std=std)])

    return preprocessing(img).unsqueeze(0), None
示例#8
0
def maybe_random_perspective(image):
    if randint(0, 100) <= 2:
        return RandomPerspective(distortion_scale=randint(4, 10) / 10, p=1.)(image)
    return image
示例#9
0
 def apply_data_augmentation(self, img):
     aug = self.params["config"]["augmentation"]
     if aug and self.set_name == "train":
         # Convert to PIL Image
         img = img[:, :, 0] if img.shape[2] == 1 else img
         img = Image.fromarray(img)
         # Apply data augmentation
         if "dpi" in aug.keys() and np.random.rand() < aug["dpi"]["proba"]:
             factor = np.random.uniform(aug["dpi"]["min_factor"],
                                        aug["dpi"]["max_factor"])
             img = DPIAdjusting(factor)(img)
         if "perspective" in aug.keys(
         ) and np.random.rand() < aug["perspective"]["proba"]:
             scale = np.random.uniform(aug["perspective"]["min_factor"],
                                       aug["perspective"]["max_factor"])
             img = RandomPerspective(distortion_scale=scale,
                                     p=1,
                                     interpolation=Image.BILINEAR,
                                     fill=255)(img)
         elif "elastic_distortion" in aug.keys(
         ) and np.random.rand() < aug["elastic_distortion"]["proba"]:
             magnitude = np.random.randint(
                 1, aug["elastic_distortion"]["max_magnitude"] + 1)
             kernel = np.random.randint(
                 1, aug["elastic_distortion"]["max_kernel"] + 1)
             magnitude_w, magnitude_h = (
                 magnitude, 1) if np.random.randint(2) == 0 else (1,
                                                                  magnitude)
             img = ElasticDistortion(grid=(kernel, kernel),
                                     magnitude=(magnitude_w, magnitude_h),
                                     min_sep=(1, 1))(img)
         elif "random_transform" in aug.keys(
         ) and np.random.rand() < aug["random_transform"]["proba"]:
             img = RandomTransform(aug["random_transform"]["max_val"])(img)
         if "dilation_erosion" in aug.keys(
         ) and np.random.rand() < aug["dilation_erosion"]["proba"]:
             kernel_h = np.random.randint(
                 aug["dilation_erosion"]["min_kernel"],
                 aug["dilation_erosion"]["max_kernel"] + 1)
             kernel_w = np.random.randint(
                 aug["dilation_erosion"]["min_kernel"],
                 aug["dilation_erosion"]["max_kernel"] + 1)
             if np.random.randint(2) == 0:
                 img = Erosion((kernel_w, kernel_h),
                               aug["dilation_erosion"]["iterations"])(img)
             else:
                 img = Dilation((kernel_w, kernel_h),
                                aug["dilation_erosion"]["iterations"])(img)
         if "contrast" in aug.keys(
         ) and np.random.rand() < aug["contrast"]["proba"]:
             factor = np.random.uniform(aug["contrast"]["min_factor"],
                                        aug["contrast"]["max_factor"])
             img = adjust_contrast(img, factor)
         if "brightness" in aug.keys(
         ) and np.random.rand() < aug["brightness"]["proba"]:
             factor = np.random.uniform(aug["brightness"]["min_factor"],
                                        aug["brightness"]["max_factor"])
             img = adjust_brightness(img, factor)
         if "sign_flipping" in aug.keys(
         ) and np.random.rand() < aug["sign_flipping"]["proba"]:
             img = SignFlipping()(img)
         # convert to numpy array
         img = np.array(img)
         img = np.expand_dims(img, axis=2) if len(img.shape) == 2 else img
     return img
示例#10
0
def main(model_type='resnet', n_epochs=20, lr=0.0005, batch_size=32):
    """ The main function. """

    #set file paths
    train_img_path = '/Users/emmarydholm/Documents/code/melanoma_classification/data_added_melanoma/train/train_resized'  #'/data/train_resized/' #path to resized train image
    test_img_path = '/Users/emmarydholm/Documents/code/melanoma_classification/data_added_melanoma/test/test_resized'  #'/data/test_resized/' #path to resized train image
    data_train = pd.read_csv(
        'data/train_processed.csv')  #path to processed csv file for train data
    data_test = pd.read_csv(
        'data/test_processed.csv')  #path to processed csv file for test data

    #split data_train into train and validation
    n_data_train = len(data_train)
    split = int(0.2 * n_data_train)
    data_train, data_valid = data_train.iloc[split:], data_train.iloc[0:split]

    #transformation for test and validation data
    transform_valid = Compose([
        CenterCrop(
            224),  # Crops out the center, resulting image shape is 224x224
        ToTensor(),
        Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])

    #augmentations for the training data
    transform_train = Compose([
        CenterCrop(224),
        RandomPerspective(distortion_scale=0.5, p=0.5, interpolation=3,
                          fill=0),
        RandomVerticalFlip(p=0.5),
        RandomHorizontalFlip(p=0.5),
        ToTensor(),
        Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])

    #create the datasets
    dataset_train = MelanomaDataset(data_train,
                                    train_img_path,
                                    transform=transform_train)
    dataset_valid = MelanomaDataset(data_valid,
                                    train_img_path,
                                    transform=transform_valid)
    dataset_test = MelanomaTestDataset(data_test,
                                       test_img_path,
                                       transform=transform_valid)

    #create the batches with dataloader
    training_loader = DataLoader(dataset_train,
                                 batch_size=batch_size,
                                 shuffle=True)
    validation_loader = DataLoader(dataset_valid,
                                   batch_size=batch_size,
                                   shuffle=True)
    #test_loader = DataLoader(dataset_test, batch_size=32, shuffle=False)

    print('There is ', len(dataset_train), 'images in train set and ', \
         len(dataset_valid), 'in dev set.')

    #define device
    if torch.cuda.is_available():
        device = 'cuda'
    else:
        device = 'cpu'

    #define model and freeze the deepest layers
    if model_type == 'resnet':
        model = ResnetModel(9)
        no_train_layers = [
            model.cnn.layer1, model.cnn.layer2, model.cnn.layer3
        ]
        for layer in no_train_layers:
            for param in layer:
                param.requires_grad = False

    elif model_type == 'efficientnet':
        model = EfficientNetModel(9)
        model.cnn._conv_stem.requires_grad = False

        no_train_layers = model.cnn._blocks[:28]
        for layer in no_train_layers:
            #for param in layer:
            layer.requires_grad = False

    model = model.to(device)

    #define loss function
    loss_function = torch.nn.BCEWithLogitsLoss()

    #define optimizer
    optimizer = optim.Adam(model.parameters(), lr=lr)

    #define scheduler
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                     factor=0.5,
                                                     patience=1)

    train_loss = []
    validation_loss = []
    train_auc = []
    val_auc = []
    best_auc = 0.0

    #training loop
    for i in range(n_epochs):
        t1, v1, t_auc, v_auc = train_epoch(training_loader, validation_loader,
                                           model, loss_function, optimizer,
                                           device)

        print(f"\r Epoch {i+1}: Training loss = {t1}, Validation loss = {v1}, \
             \n Train auc = {t_auc},  Validation_auc = {v_auc}")
        print('lr = ', optimizer.param_groups[0]['lr'])

        train_loss.append(t1)
        validation_loss.append(v1)
        train_auc.append(t_auc)
        val_auc.append(v_auc)

        scheduler.step(v_auc)

        # save best model
        if v_auc > best_auc:
            torch.save(model, '/best_model.pt')
            best_auc = v_auc
            print('model saved')

    #plot the result
    epochs = np.arange(n_epochs)
    fig, ax = plt.subplots()
    ax.set_title('Training and Validation losses')
    ax.plot(epochs, train_loss, label='Train')
    ax.plot(epochs, validation_loss, label='Dev')
    plt.legend()

    fig, ax = plt.subplots()
    ax.set_title('Training and Validation ROC AUC')
    ax.plot(epochs, train_auc, label='Train')
    ax.plot(epochs, val_auc, label='Dev')
    plt.legend()
示例#11
0
def main(args):
    perspective = RandomPerspective(args.data_aug_perspective)
    brightness = ColorJitter(args.data_aug_brightness)
    tensor = ToTensor()
    transforms = [perspective, brightness, tensor]

    args.dataset_root.mkdir(parents=True, exist_ok=True)

    if args.data_aug_hflip:
        transforms.insert(0, RandomHorizontalFlip())

    composed = Compose(transforms)

    train_dataset = torchvision.datasets.CIFAR10(
        args.dataset_root, train=True, download=True, transform=composed
    )

    test_dataset = torchvision.datasets.CIFAR10(
        args.dataset_root, train=False, download=False, transform=tensor
    )

    train_loader = torch.utils.data.DataLoader(
        train_dataset,
        shuffle=True,
        batch_size=args.batch_size,
        pin_memory=True,
        num_workers=args.worker_count,
    )
    test_loader = torch.utils.data.DataLoader(
        test_dataset,
        shuffle=False,
        batch_size=args.batch_size,
        num_workers=args.worker_count,
        pin_memory=True,
    )

    model = CNN(height=32, width=32, channels=3, class_count=10, dropout=args.dropout)

    ## TASK 8: Redefine the criterion to be softmax cross entropy
    criterion = nn.CrossEntropyLoss()

    ## TASK 11: Define the optimizer
    optimizer = optim.SGD(model.parameters(), args.learning_rate, momentum=0.9)

    log_dir = get_summary_writer_log_dir(args)
    print(f"Writing logs to {log_dir}")
    summary_writer = SummaryWriter(
            str(log_dir),
            flush_secs=5
    )
    trainer = Trainer(
        model, train_loader, test_loader, criterion, optimizer, summary_writer, DEVICE
    )

    trainer.train(
        args.epochs,
        args.val_frequency,
        print_frequency=args.print_frequency,
        log_frequency=args.log_frequency,
    )

    summary_writer.close()
示例#12
0
def apply_data_augmentation(img, da_config):
    applied_da = list()
    # Convert to PIL Image
    img = img[:, :, 0] if img.shape[2] == 1 else img
    img = Image.fromarray(img)
    # Apply data augmentation
    if "dpi" in da_config.keys(
    ) and np.random.rand() < da_config["dpi"]["proba"]:
        valid_factor = False
        while not valid_factor:
            factor = np.random.uniform(da_config["dpi"]["min_factor"],
                                       da_config["dpi"]["max_factor"])
            valid_factor = True
            if ("max_width" in da_config["dpi"].keys() and factor*img.size[0] > da_config["dpi"]["max_width"]) or \
                ("max_height" in da_config["dpi"].keys() and factor * img.size[1] > da_config["dpi"]["max_height"]):
                valid_factor = False
            if ("min_width" in da_config["dpi"].keys() and factor*img.size[0] < da_config["dpi"]["min_width"]) or \
                ("min_height" in da_config["dpi"].keys() and factor * img.size[1] < da_config["dpi"]["min_height"]):
                valid_factor = False
        img = DPIAdjusting(factor)(img)
        applied_da.append("dpi: factor {}".format(factor))
    if "perspective" in da_config.keys(
    ) and np.random.rand() < da_config["perspective"]["proba"]:
        scale = np.random.uniform(da_config["perspective"]["min_factor"],
                                  da_config["perspective"]["max_factor"])
        img = RandomPerspective(distortion_scale=scale,
                                p=1,
                                interpolation=Image.BILINEAR,
                                fill=255)(img)
        applied_da.append("perspective: scale {}".format(scale))
    elif "elastic_distortion" in da_config.keys(
    ) and np.random.rand() < da_config["elastic_distortion"]["proba"]:
        magnitude = np.random.randint(
            1, da_config["elastic_distortion"]["max_magnitude"] + 1)
        kernel = np.random.randint(
            1, da_config["elastic_distortion"]["max_kernel"] + 1)
        magnitude_w, magnitude_h = (
            magnitude, 1) if np.random.randint(2) == 0 else (1, magnitude)
        img = ElasticDistortion(grid=(kernel, kernel),
                                magnitude=(magnitude_w, magnitude_h),
                                min_sep=(1, 1))(img)
        applied_da.append(
            "elastic_distortion: magnitude ({}, {})  - kernel ({}, {})".format(
                magnitude_w, magnitude_h, kernel, kernel))
    elif "random_transform" in da_config.keys(
    ) and np.random.rand() < da_config["random_transform"]["proba"]:
        img = RandomTransform(da_config["random_transform"]["max_val"])(img)
        applied_da.append("random_transform")
    if "dilation_erosion" in da_config.keys(
    ) and np.random.rand() < da_config["dilation_erosion"]["proba"]:
        kernel_h = np.random.randint(
            da_config["dilation_erosion"]["min_kernel"],
            da_config["dilation_erosion"]["max_kernel"] + 1)
        kernel_w = np.random.randint(
            da_config["dilation_erosion"]["min_kernel"],
            da_config["dilation_erosion"]["max_kernel"] + 1)
        if np.random.randint(2) == 0:
            img = Erosion((kernel_w, kernel_h),
                          da_config["dilation_erosion"]["iterations"])(img)
            applied_da.append("erosion:  kernel ({}, {})".format(
                kernel_w, kernel_h))
        else:
            img = Dilation((kernel_w, kernel_h),
                           da_config["dilation_erosion"]["iterations"])(img)
            applied_da.append("dilation:  kernel ({}, {})".format(
                kernel_w, kernel_h))

    if "contrast" in da_config.keys(
    ) and np.random.rand() < da_config["contrast"]["proba"]:
        factor = np.random.uniform(da_config["contrast"]["min_factor"],
                                   da_config["contrast"]["max_factor"])
        img = adjust_contrast(img, factor)
        applied_da.append("contrast: factor {}".format(factor))
    if "brightness" in da_config.keys(
    ) and np.random.rand() < da_config["brightness"]["proba"]:
        factor = np.random.uniform(da_config["brightness"]["min_factor"],
                                   da_config["brightness"]["max_factor"])
        img = adjust_brightness(img, factor)
        applied_da.append("brightness: factor {}".format(factor))
    if "color_jittering" in da_config.keys(
    ) and np.random.rand() < da_config["color_jittering"]["proba"]:
        img = ColorJitter(
            contrast=da_config["color_jittering"]["factor_contrast"],
            brightness=da_config["color_jittering"]["factor_brightness"],
            saturation=da_config["color_jittering"]["factor_saturation"],
            hue=da_config["color_jittering"]["factor_hue"],
        )(img)
        applied_da.append("jittering")
    if "sign_flipping" in da_config.keys(
    ) and np.random.rand() < da_config["sign_flipping"]["proba"]:
        img = SignFlipping()(img)
        applied_da.append("sign_flipping")
    if "crop" in da_config.keys(
    ) and np.random.rand() < da_config["crop"]["proba"]:
        new_w, new_h = [int(t * da_config["crop"]["ratio"]) for t in img.size]
        img = RandomCrop((new_h, new_w))(img)
        applied_da.append("random_crop")
    elif "fixed_crop" in da_config.keys(
    ) and np.random.rand() < da_config["fixed_crop"]["proba"]:
        img = RandomCrop(
            (da_config["fixed_crop"]["h"], da_config["fixed_crop"]["w"]))(img)
        applied_da.append("fixed_crop")
    # convert to numpy array
    img = np.array(img)
    img = np.expand_dims(img, axis=2) if len(img.shape) == 2 else img
    return img, applied_da
示例#13
0
if __name__ == "__main__":
    args = AttrDict({
        "lr":
        0.001,
        "batch_size":
        8,
        "checkpoint_each":
        10,
        "epochs":
        100,
        "checkpoints_dir":
        "./checkpoints_resnet18",
        "log_each":
        200,
        "train_transform":
        Compose([
            Resize((512, 512)),
            RandomHorizontalFlip(p=0.5),
            RandomVerticalFlip(p=0.5),
            RandomPerspective(),
            ToTensor(),
        ]),
        "val_transform":
        Compose([Resize((512, 512)), ToTensor()]),
        "train":
        True,
        "model_type":
        "resnet18"
    })
    main(args)