numpy.random.seed(args.seed) from toupee import data from toupee import config from toupee.mlp import sequential_model params = config.load_parameters(args.params_file) def arg_params(arg_value,param): if arg_value is not None: params.__dict__[param] = arg_value for arg, param in arg_param_pairings: arg_params(arg,param) original_params = copy.deepcopy(params) dataset = data.load_data(params.dataset, pickled = params.pickled, one_hot_y = params.one_hot, join_train_and_valid = params.join_train_and_valid) method = params.method method.prepare(params,dataset) train_set = method.resampler.get_train() valid_set = method.resampler.get_valid() members = [] intermediate_scores = [] final_score = None for i in range(0,params.ensemble_size): print 'training member {0}'.format(i) members.append(method.create_member()) ensemble = method.create_aggregator(params,members,train_set,valid_set) test_set_x, test_set_y = method.resampler.get_test() test_score = accuracy(ensemble,test_set_x,test_set_y) print 'Intermediate test accuracy: {0} %'.format(test_score * 100.)
if os.path.exists(dict_dir): params.dataset = dict_dir else: print("The desired dict_number doesn't exist!") def arg_params(arg_value, param): if arg_value is not None: params.__dict__[param] = arg_value for arg, param in arg_param_pairings: arg_params(arg, param) dataset = data.load_data(params.dataset, pickled=params.pickled, one_hot_y=params.one_hot, join_train_and_valid=params.join_train_and_valid, zca_whitening=params.zca_whitening, testfile=args.testfile, validfile=args.validfile, trainfile=args.trainfile) method = params.method method.prepare(params, dataset) train_set = method.resampler.get_train() valid_set = method.resampler.get_valid() #selects the appropriate intermediate score: classification - accuracy; regression - euclidian_distance scorer = [] scorer_name = [] if params.classification == True: scorer.append(accuracy) scorer_name.append('accuracy') else:
from toupee import data from toupee import config from toupee.mlp import sequential_model params = config.load_parameters(args.params_file) def arg_params(arg_value,param): if arg_value is not None: params.__dict__[param] = arg_value for arg, param in arg_param_pairings: arg_params(arg,param) original_params = copy.deepcopy(params) dataset = data.load_data(params.dataset, pickled = params.pickled, one_hot_y = params.one_hot, join_train_and_valid = params.join_train_and_valid, zca_whitening = params.zca_whitening) method = params.method method.prepare(params,dataset) train_set = method.resampler.get_train() valid_set = method.resampler.get_valid() members = [] intermediate_scores = [] final_score = None continue_learning = True for i in range(0,params.ensemble_size): print('training member {0}'.format(i)) m = method.create_member() if m[0] is not None: members.append(m[:2])
arg_param_pairings = [ (args.seed, 'random_seed'), (args.results_db, 'results_db'), (args.results_host, 'results_host'), (args.results_table, 'results_table'), (args.epochs, 'n_epochs'), ] from toupee import config params = config.load_parameters(args.params_file) def arg_params(arg_value, param): if arg_value is not None: params.__dict__[param] = arg_value for arg, param in arg_param_pairings: arg_params(arg, param) from toupee import data from toupee.mlp import MLP, test_mlp dataset = data.load_data(params.dataset, resize_to=params.resize_data_to, shared=False, pickled=params.pickled, center_and_normalise=params.center_and_normalise, join_train_and_valid=params.join_train_and_valid) pretraining_set = data.make_pretraining_set(dataset, params.pretraining) mlp = test_mlp(dataset, params, pretraining_set=pretraining_set) if args.save_file is not None: dill.dump(mlp, open(args.save_file, "wb"))
from toupee import data import sys import cPickle import gzip import os import copy import math import numpy as np if __name__ == '__main__': if len(sys.argv) > 2: dataset = sys.argv[1] fileName = sys.argv[2] else: raise Exception("need source and destination") dataset = data.load_data(dataset, pickled=False, shared=False) train, valid, test = dataset train_x, train_y = train valid_x, valid_y = valid test_x, test_y = test # n_in = test_x.shape[1] # params = { 'alpha': 0.0, # 'beta': 30.0, # 'gamma': 20.0, # 'sigma': 1, # 'pflip': 0.0, # 'translation': 3.0, # 'bilinear': True # } # t = data.GPUTransformer(sharedX(train_x), # x=int(math.sqrt(n_in)),
print "setting random seed to: {0}".format(args.seed) numpy.random.seed(args.seed) from toupee import data from toupee import config from toupee.mlp import sequential_model params = config.load_parameters(args.params_file) def arg_params(arg_value,param): if arg_value is not None: params.__dict__[param] = arg_value for arg, param in arg_param_pairings: arg_params(arg,param) dataset = data.load_data(params.dataset, pickled = params.pickled, one_hot_y = params.one_hot) method = params.method method.prepare(params,dataset) train_set = method.resampler.get_train() valid_set = method.resampler.get_valid() members = [] intermediate_scores = [] final_score = None for i in range(0,params.ensemble_size): print 'training member {0}'.format(i) members.append(method.create_member()) ensemble = method.create_aggregator(params,members,train_set,valid_set) test_set_x, test_set_y = method.resampler.get_test() test_score = accuracy(ensemble,test_set_x,test_set_y) print 'Intermediate test accuracy: {0} %'.format(test_score * 100.)
#!/usr/bin/python import sys import numpy as np import os from toupee import data if __name__ == '__main__': location = sys.argv[1] dest = sys.argv[1] + "_th/" if not os.path.exists(dest): os.mkdir(dest) shape = [int(x) for x in sys.argv[2].split(',')] dataset = data.load_data(location, pickled=False, one_hot_y=True) print dataset[0][0].shape np.savez_compressed(dest + 'train', x=dataset[0][0].reshape([dataset[0][0].shape[0]] + shape), y=dataset[0][1]) np.savez_compressed(dest + 'valid', x=dataset[1][0].reshape([dataset[1][0].shape[0]] + shape), y=dataset[1][1]) np.savez_compressed(dest + 'test', x=dataset[2][0].reshape([dataset[2][0].shape[0]] + shape), y=dataset[2][1])
#!/usr/bin/python import sys import numpy as np import os from toupee import data if __name__ == '__main__': location = sys.argv[1] dest = sys.argv[1] + "_th/" if not os.path.exists(dest): os.mkdir(dest) shape = [int(x) for x in sys.argv[2].split(',')] dataset = data.load_data(location, pickled = False, one_hot_y = True) print dataset[0][0].shape np.savez_compressed(dest + 'train', x=dataset[0][0].reshape([dataset[0][0].shape[0]] + shape), y=dataset[0][1]) np.savez_compressed(dest + 'valid', x=dataset[1][0].reshape([dataset[1][0].shape[0]] + shape), y=dataset[1][1]) np.savez_compressed(dest + 'test', x=dataset[2][0].reshape([dataset[2][0].shape[0]] + shape), y=dataset[2][1])
arg_param_pairings = [ (args.seed, 'random_seed'), (args.results_db, 'results_db'), (args.results_host, 'results_host'), (args.results_table, 'results_table'), (args.epochs, 'n_epochs'), ] from toupee import config params = config.load_parameters(args.params_file) def arg_params(arg_value,param): if arg_value is not None: params.__dict__[param] = arg_value for arg, param in arg_param_pairings: arg_params(arg,param) from toupee import data from toupee.mlp import MLP, test_mlp dataset = data.load_data(params.dataset, resize_to = params.resize_data_to, shared = False, pickled = params.pickled, center_and_normalise = params.center_and_normalise, join_train_and_valid = params.join_train_and_valid) pretraining_set = data.make_pretraining_set(dataset,params.pretraining) mlp = test_mlp(dataset, params, pretraining_set = pretraining_set) if args.save_file is not None: dill.dump(mlp,open(args.save_file,"wb"))
arg_param_pairings = [ (args.results_db, 'results_db'), (args.results_host, 'results_host'), (args.results_table, 'results_table'), (args.epochs, 'n_epochs'), ] if 'seed' in args.__dict__: print "setting random seed to: {0}".format(args.seed) numpy.random.seed(args.seed) from toupee import data from toupee import config from toupee.mlp import sequential_model import toupee print "using toupee version {0}".format(toupee.version) params = config.load_parameters(args.params_file) def arg_params(arg_value, param): if arg_value is not None: params.__dict__[param] = arg_value for arg, param in arg_param_pairings: arg_params(arg, param) dataset = data.load_data(params.dataset, pickled=params.pickled, one_hot_y=params.one_hot, join_train_and_valid=params.join_train_and_valid) mlp = sequential_model(dataset, params)
#!/usr/bin/python from toupee import data import numpy as np import argparse if __name__ == '__main__': parser = argparse.ArgumentParser(description='Convert a pylearn2 dataset') parser.add_argument('--dest', help='the destination for the dataset') parser.add_argument('--source', help='the source of the data') parser.add_argument('--shape', help='new shape to enforce') parser.add_argument('--tf-to-th', help='reorder dimensions from tf to th', action='store_true') parser.add_argument('--th-to-tf', help='reorder dimensions from th to tf', action='store_true') args = parser.parse_args() dataset = data.load_data(args.source, pickled=False, one_hot_y=False, center_and_normalise=True, join_train_and_valid=False, zca_whitening=True) np.savez_compressed(args.dest + "/train", x=dataset[0][0], y=dataset[0][1]) np.savez_compressed(args.dest + "/valid", x=dataset[1][0], y=dataset[1][1]) np.savez_compressed(args.dest + "/test", x=dataset[2][0], y=dataset[2][1])
from toupee import data import sys import cPickle import gzip import os import copy import math import numpy as np if __name__ == '__main__': if len(sys.argv) > 2: dataset = sys.argv[1] fileName = sys.argv[2] else: raise Exception("need source and destination") dataset = data.load_data(dataset,pickled=False,shared=False) train,valid,test = dataset train_x, train_y = train valid_x, valid_y = valid test_x, test_y = test # n_in = test_x.shape[1] # params = { 'alpha': 0.0, # 'beta': 30.0, # 'gamma': 20.0, # 'sigma': 1, # 'pflip': 0.0, # 'translation': 3.0, # 'bilinear': True # } # t = data.GPUTransformer(sharedX(train_x), # x=int(math.sqrt(n_in)),