示例#1
0
def mnet_v6d6_test():
    mycfg = {
        'test': True,
        'use_self_fed_heads': True,
        'use_value_head': False,
        'use_loss_type': 'none',
        'use_lstm': True,
        'lstm_cell_type': 'lstm',
        'lstm_layer_norm': True,
        'batch_size': 32,
        'rollout_len': 16,
        'lstm_duration': 1,
        'nlstm': 256,
        'hs_len': 256 * 2,
        'weight_decay': 0.0005,
        'arg_scope_type': 'mnet_v5_type_a',
        'use_base_mask': True,
        'reward_weights': [[0.0, 0.0, 0.0, 0.0]],
        'n_v': 4,
        'vec_embed_version': 'v3',
        'last_act_embed_version': 'v2',
        'zstat_embed_version': 'v7',
        'trans_version': 'v4',
    }
    nc = net_config_cls(ob_space, ac_space, **mycfg)

    inputs = net_inputs_placeholders_fun(nc)

    out = net_build_fun(inputs, nc)
    print(out.self_fed_heads)
    print(out.outer_fed_heads)
    print(out.S)
    print(out.embed)

    print(out.value_head)
    assert out.value_head is None

    print(out.loss.total_reg_loss)

    print(out.loss.loss_endpoints)
    assert out.loss.loss_endpoints == {}

    print(out.loss.total_il_loss)
    assert out.loss.total_il_loss is None

    print(out.loss.pg_loss)
    assert out.loss.pg_loss is None

    print(out.vars.lstm_vars)
    print(out.vars.all_vars)
    for v in out.vars.all_vars:
        print(v.name)
    print(len(out.vars.all_vars))

    print(out.endpoints)
    pass
示例#2
0
def mnet_v6d6_endpoints_test():
    mycfg = {
        'use_self_fed_heads': False,
        'use_lstm': True,
        'lstm_cell_type': 'lstm',
        'lstm_layer_norm': True,
        'batch_size': 32,
        'rollout_len': 16,
        'lstm_duration': 1,
        'nlstm': 256,
        'hs_len': 256 * 2,
        'rl': False,
        'vec_embed_version': 'v3',
        'last_act_embed_version': 'v2',
        'zstat_embed_version': 'v7',
        'trans_version': 'v1',
        'embed_for_action_heads': 'int',
        'weight_decay': None,
        'arg_scope_type': 'mnet_v5_type_a',
        'endpoints_norm': False,
        'endpoints_verbosity': 20,
    }
    ob_space, ac_space = sc2_env_space('sc2full_formal8_dict')
    nc = net_config_cls(ob_space, ac_space, **mycfg)

    with tf.variable_scope('mnet_v6d6_ep', reuse=tf.AUTO_REUSE) as sc:
        pass
    inputs = net_inputs_placeholders_fun(nc)
    out = net_build_fun(inputs, nc, scope=sc)

    all_eps = tf.get_collection('mnet_v6d6_ep_1_endpoints')
    for v in all_eps:
        print(v)
    print('number of all eps: {}'.format(len(all_eps)))

    #print(out.endpoints)
    for k, v in out.endpoints.items():
        print('{}: {}'.format(k, v))
    print('number of endpoints: {}'.format(len(out.endpoints)))
示例#3
0
def mnet_v6d6_run_ppo2_loss_test():
    mycfg = {
        'test': False,
        'use_self_fed_heads': False,
        'use_value_head': True,
        'use_loss_type': 'rl_ppo2',
        'use_lstm': True,
        'lstm_cell_type': 'lstm',
        'lstm_layer_norm': True,
        'batch_size': 8,
        'rollout_len': 4,
        'lstm_duration': 1,
        'nlstm': 256,
        'hs_len': 256 * 2,
        'weight_decay': 0.0005,
        'arg_scope_type': 'mnet_v6_type_a',
        'use_base_mask': True,
        'vec_embed_version': 'v3',
        'last_act_embed_version': 'v2',
        'zstat_embed_version': 'v4d1',
        'zstat_index_base_wavelen': 555.6,
        'trans_version': 'v4',
        'use_astar_glu': True,
        'use_astar_func_embed': True,
        'n_v': 5,
        'lam': 0.8,
        'gather_batch': True,
        'merge_pi': False,
        'distillation': True,
        'value_net_version': 'trans_v1',
    }
    converter = PB2AllConverter(dict_space=True,
                                zmaker_version='v5',
                                zstat_data_src=FLAGS.zstat_data_src,
                                game_version=FLAGS.game_version,
                                sort_executors='v1')
    ob_space, ac_space = converter.space.spaces

    # build the net
    nc = net_config_cls(ob_space, ac_space, **mycfg)
    nc.reward_weights = np.ones(shape=nc.reward_weights_shape,
                                dtype=np.float32)
    inputs = net_inputs_placeholders_fun(nc)
    keys = list(inputs.X.keys())
    for key in keys:
        inputs.X['OPPO_' + key] = inputs.X[key]
    out = net_build_fun(inputs, nc, scope='mnet_v6d6_rl_ppo2_loss')

    converter.reset(replay_name=FLAGS.replay_name,
                    player_id=FLAGS.player_id,
                    mmr=6000,
                    map_name=FLAGS.map_name)
    run_config = run_configs.get()
    replay_data = run_config.replay_data(
        path.join(FLAGS.replay_dir, FLAGS.replay_name + '.SC2Replay'))
    with run_config.start(version=FLAGS.game_version) as controller:
        replay_info = controller.replay_info(replay_data)
        print(replay_info)
        controller.start_replay(
            sc_pb.RequestStartReplay(replay_data=replay_data,
                                     map_data=None,
                                     options=get_replay_actor_interface(
                                         FLAGS.map_name),
                                     observed_player_id=FLAGS.player_id,
                                     disable_fog=False))
        controller.step()
        last_pb = None
        last_game_info = None
        sess = tf.Session()
        tf.global_variables_initializer().run(session=sess)
        while True:
            pb_obs = controller.observe()
            game_info = controller.game_info()
            if last_pb is None:
                last_pb = pb_obs
                last_game_info = game_info
                continue
            if pb_obs.player_result:
                # episode end, the zstat to this extent is what we need
                break
            # pb2all: X, A, weights as data
            data = converter.convert(pb=(last_pb, last_game_info),
                                     next_pb=(pb_obs, game_info))
            if data:
                feed_dict = {}
                X, A = data[0][0]
                for key in X:
                    feed_dict[inputs.X[key]] = [X[key]] * mycfg['batch_size']
                    # if 'OPPO_'+key in inputs.X:
                    #   feed_dict[inputs.X['OPPO_'+key]] = [X[key]] * mycfg['batch_size']
                for key in A:
                    feed_dict[inputs.A[key]] = [A[key]] * mycfg['batch_size']
                    feed_dict[inputs.neglogp[key]] = [0] * mycfg['batch_size']
                    feed_dict[inputs.logits[key]] = np.zeros(
                        shape=inputs.logits[key].shape)
                feed_dict[inputs.r] = [[0] * nc.n_v] * mycfg['batch_size']
                feed_dict[inputs.discount] = [1] * mycfg['batch_size']
                feed_dict[inputs.S] = [
                    np.array([0] * mycfg['hs_len'], dtype=np.float32)
                ] * mycfg['batch_size']
                feed_dict[inputs.M] = [np.array(1, dtype=np.bool)
                                       ] * mycfg['batch_size']
                loss = sess.run([
                    out.loss.pg_loss, out.loss.value_loss,
                    out.loss.entropy_loss, out.loss.loss_endpoints
                ], feed_dict)
                print('Loss endpoints: {}'.format(loss))
            # update and step the replay
            last_pb = pb_obs
            last_game_info = game_info
            controller.step(1)  # step_mul
示例#4
0
def mnet_v6d6_run_il_loss_test():
    mycfg = {
        'test': False,
        'use_self_fed_heads': False,
        'use_value_head': False,
        'use_loss_type': 'il',
        'il_multi_label_loss': True,
        'use_lstm': True,
        'lstm_cell_type': 'lstm',
        'lstm_layer_norm': True,
        'batch_size': 2,
        'rollout_len': 1,
        'lstm_duration': 1,
        'nlstm': 256,
        'hs_len': 256 * 2,
        'weight_decay': 0.0005,
        'arg_scope_type': 'mnet_v6_type_a',
        'use_base_mask': True,
        'vec_embed_version': 'v2d1',
        'last_act_embed_version': 'v2',
        'zstat_embed_version': 'v7',
        'trans_version': 'v5',
        'gather_batch': True,
        'use_astar_glu': True,
        'use_astar_func_embed': True,
        'pos_logits_mode': '3x3up2',
        'pos_n_blk': 3,
        'pos_n_skip': 2,
    }
    converter = PB2AllConverter(dict_space=True,
                                zmaker_version='v5',
                                zstat_data_src=FLAGS.zstat_data_src,
                                game_version=FLAGS.game_version,
                                sort_executors='v1',
                                delete_dup_action='v2',
                                input_map_size=(128, 128),
                                output_map_size=(256, 256))
    ob_space, ac_space = converter.space.spaces

    # build the net
    nc = net_config_cls(ob_space, ac_space, **mycfg)
    inputs = net_inputs_placeholders_fun(nc)
    out = net_build_fun(inputs, nc, scope='mnet_v6d6_il_loss')
    print('Successfully created the net.')

    converter.reset(replay_name=FLAGS.replay_name,
                    player_id=FLAGS.player_id,
                    mmr=6000,
                    map_name=FLAGS.map_name)
    run_config = run_configs.get()
    replay_data = run_config.replay_data(
        path.join(FLAGS.replay_dir, FLAGS.replay_name + '.SC2Replay'))

    with run_config.start(version=FLAGS.game_version) as controller:
        replay_info = controller.replay_info(replay_data)
        print(replay_info)
        controller.start_replay(
            sc_pb.RequestStartReplay(replay_data=replay_data,
                                     map_data=None,
                                     options=get_replay_actor_interface(
                                         FLAGS.map_name),
                                     observed_player_id=FLAGS.player_id,
                                     disable_fog=False))

        controller.step()
        last_pb = None
        last_game_info = None
        sess = tf.Session()
        tf.global_variables_initializer().run(session=sess)

        for _ in range(1000):
            pb_obs = controller.observe()
            game_info = controller.game_info()
            if last_pb is None:
                last_pb = pb_obs
                last_game_info = game_info
                continue
            if pb_obs.player_result:
                # episode ends, the zstat to this extent is what we need
                break
            # pb2all: X, A, weight as data
            data = converter.convert(pb=(last_pb, last_game_info),
                                     next_pb=(pb_obs, game_info))
            if len(data) > 0:
                X, A = data[0][0]
                feed_dict = {}
                for key in X:
                    feed_dict[inputs.X[key]] = [X[key]] * mycfg['batch_size']
                for key in A:
                    feed_dict[inputs.A[key]] = [A[key]] * mycfg['batch_size']
                feed_dict[inputs.S] = (
                    [np.array([0] * mycfg['hs_len'], dtype=np.float32)] *
                    mycfg['batch_size'])
                feed_dict[inputs.M] = ([np.array(1, dtype=np.bool)] *
                                       mycfg['batch_size'])
                loss = sess.run(out.loss.loss_endpoints, feed_dict)
                ab = A['A_AB']
                avail_actions = np.nonzero(X['MASK_AB'])[0]
                avail_selections = np.nonzero(X['MASK_SELECTION'][ab])[0]
                selection_units = A['A_SELECT']
                print('Avail action num: {}, select {}'.format(
                    len(avail_actions), ZERG_ABILITIES[ab][0]))
                # print(ZERG_ABILITIES[ab][0])
                print('Avail unit num: {}, select {}'.format(
                    len(avail_selections),
                    selection_units[:sum([(i != 600)
                                          for i in selection_units])]))
                print('Loss endpoints: {}'.format(loss))
            # update & step the replay
            last_pb = pb_obs
            last_game_info = game_info
            controller.step(1)  # step_mul
        controller.quit()