def test_decision_tree_3(): """Ensure that the TPOT decision tree method outputs the same as the sklearn decision tree when min_weight>0.5""" tpot_obj = TPOT() result = tpot_obj._decision_tree(training_testing_data, 0.6) result = result[result['group'] == 'testing'] dtc = DecisionTreeClassifier(min_weight_fraction_leaf=0.5, random_state=42) dtc.fit(training_features, training_classes) assert np.array_equal(result['guess'].values, dtc.predict(testing_features))
def test_decision_tree(): """Ensure that the TPOT decision tree method outputs the same as the sklearn decision tree""" tpot_obj = TPOT() result = tpot_obj._decision_tree(training_testing_data, 0, 0) result = result[result['group'] == 'testing'] dtc = DecisionTreeClassifier(max_features='auto', max_depth=None, random_state=42) dtc.fit(training_features, training_classes) assert np.array_equal(result['guess'].values, dtc.predict(testing_features))
def test_decision_tree_3(): """Ensure that the TPOT decision tree method outputs the same as the sklearn decision tree when max_features>no. of features""" tpot_obj = TPOT() result = tpot_obj._decision_tree(training_testing_data, 100, 0) result = result[result['group'] == 'testing'] dtc = DecisionTreeClassifier(max_features=64, max_depth=None, random_state=42) dtc.fit(training_features, training_classes) assert np.array_equal(result['guess'].values, dtc.predict(testing_features))