示例#1
0
def cmd(analyzed_csv, algo_feed):
    """Produces the smart-broadcasting plots after reading values from ANALYZED_CSV."""

    chpt_regex = re.compile(r'-([\d]*)$')
    df = pd.read_csv('results-algo/top_k-q_0.33-s-fix-adjust_0.csv').dropna()

    # Derive to which epoch was this instance trained to.
    df['chpt'] = [int(chpt_regex.search(x)[1]) for x in df.chpt_file]

    other_key = 'RQ_algo_num_tweets_mean' if algo_feed else 'RQ_num_tweets_mean'

    # Determine the users for which number of tweets are close enough.
    index = (np.abs(df['RL_num_tweets_mean'] - df[other_key]) < 2)
    print(_now(), '{} users are valid.'.format(np.sum(index)))

    # Setting up output
    plot_base = './output-plots'
    os.makedirs(plot_base, exist_ok=True)

    # Calculating the top-k metric.

    if algo_feed:
        baseline_key = 'poisson_top_k_algo_mean'
        RL_key = 'RL_top_k_algo_mean'
        RQ_key = 'RQ_algo_top_k_algo_mean'
        karimi_key = 'karimi_top_k_algo_mean'
    else:
        baseline_key = 'poisson_top_k_mean'
        RL_key = 'RL_top_k_mean'
        RQ_key = 'RQ_top_k_mean'
        karimi_key = 'karimi_top_k_mean'

    baseline = df[baseline_key][index]
    Y = {}
    Y['RL'] = df[RL_key][index] / baseline
    Y['RQ'] = df[RQ_key][index] / baseline
    Y['karimi'] = df[karimi_key][index] / baseline

    # Plotting the top-k metric.
    plt.figure()
    colors = sns.color_palette(n_colors=3)
    latexify(fig_width=2.25, largeFonts=False)
    box = plt.boxplot([Y['RL'],
                       Y['RQ'],
                       Y['karimi']],
                      whis=0,
                      showmeans=True,
                      showfliers=False,
                      showcaps=False,
                      patch_artist=True,
                      medianprops={'linewidth': 1.0},
                      boxprops={'linewidth': 1.0, 'edgecolor': colors[0],
                                'facecolor': colors[1], 'alpha': 0.3},
                      whiskerprops={'linewidth': 0})

    for idx in range(len(colors)):
        box['boxes'][idx].set_facecolor(colors[idx])
        box['boxes'][idx].set_edgecolor(colors[idx])
        box['means'][idx].set_markersize(5)
        box['means'][idx].set_markerfacecolor(colors[idx])
        box['medians'][idx].set_color(colors[idx])

    plt.xticks([1, 2, 3], [r'TPPRL', r'\textsc{RedQueen}',
                           'Karimi'])
    plt.tight_layout()
    format_axes(plt.gca())
    plt.savefig(os.path.join(plot_base, 'algo-top-1.pdf'), bbox_inches='tight', pad_inches=0)

    # Calculating the avg-rank metric

    if algo_feed:
        baseline_key = 'poisson_avg_rank_algo_mean'
        RL_key = 'RL_avg_rank_algo_mean'
        RQ_key = 'RQ_algo_avg_rank_algo_mean'
        karimi_key = 'karimi_avg_rank_algo_mean'
    else:
        baseline_key = 'poisson_avg_rank_mean'
        RL_key = 'RL_avg_rank_mean'
        RQ_key = 'RQ_avg_rank_mean'
        karimi_key = 'karimi_avg_rank_mean'

    baseline = df[baseline_key][index]
    Y = {}
    Y['RL'] = df[RL_key][index] / baseline
    Y['RQ'] = df[RQ_key][index] / baseline
    Y['karimi'] = df[karimi_key][index] / baseline

    # Plotting the top-k metric.
    plt.figure()
    colors = sns.color_palette(n_colors=3)
    latexify(fig_width=2.25, largeFonts=False)
    box = plt.boxplot([Y['RL'],
                       Y['RQ'],
                       Y['karimi']],
                      whis=0,
                      showmeans=True,
                      showfliers=False,
                      showcaps=False,
                      patch_artist=True,
                      medianprops={'linewidth': 1.0},
                      boxprops={'linewidth': 1.0, 'edgecolor': colors[0],
                                'facecolor': colors[1], 'alpha': 0.3},
                      whiskerprops={'linewidth': 0})

    for idx in range(len(colors)):
        box['boxes'][idx].set_facecolor(colors[idx])
        box['boxes'][idx].set_edgecolor(colors[idx])
        box['means'][idx].set_markersize(5)
        box['means'][idx].set_markerfacecolor(colors[idx])
        box['medians'][idx].set_color(colors[idx])

    plt.xticks([1, 2, 3], [r'TPPRL', r'\textsc{RedQueen}',
                           'Karimi'])
    plt.tight_layout()
    format_axes(plt.gca())
    plt.savefig(os.path.join(plot_base, 'algo-avg-rank.pdf'), bbox_inches='tight', pad_inches=0)
示例#2
0
def run(all_user_data_file, user_idx, output_dir, q, N, gpu, reward_kind, K, should_restore, algo_lifetime_frac,
        hidden_dims, only_cpu, with_summaries, epochs, num_iters, save_every, until,
        log_device_placement, allow_growth, algo_feed, algo_c, with_approx_rewards,
        merge_sinks, with_zero_wt):
    """Read data from `all_user_data`, extract `user_idx` from the array and run code for it."""

    assert reward_kind in [EB.R_2_REWARD, EB.TOP_K_REWARD], '"{}" is not recognized as a reward_kind.'.format(reward_kind)

    save_dir = os.path.join(output_dir, EB.SAVE_DIR_TMPL.format(user_idx))
    if not os.path.exists(save_dir) and should_restore:
        warnings.warn('{} does not exist, will NOT RESTORE.'.format(save_dir))

    with open(all_user_data_file, 'rb') as f:
        all_user_data = dill.load(f)
        one_user_data = all_user_data[user_idx]

        if merge_sinks:
            print(_now(), 'Merging the sinks!')
            one_user_data = RDU.merge_sinks(one_user_data)

    print(_now(), 'Making the trainer ...')
    sim_opts = one_user_data['sim_opts'].update({'q': q})

    num_other_broadcasters = len(sim_opts.other_sources)
    num_followers = len(sim_opts.sink_ids)

    # These parameters can also be made arguments, if needed.
    max_events = 50000
    reward_time_steps = 1000
    decay_steps = 1
    with_baseline = True
    batch_size = 16

    trainer_opts_seed = 42
    trainer_opts = EB.mk_def_exp_recurrent_trainer_opts(
        seed=trainer_opts_seed,
        device_gpu=gpu,
        hidden_dims=hidden_dims,
        num_other_broadcasters=num_other_broadcasters,
        only_cpu=only_cpu,
        max_events=max_events,
        reward_top_k=K,
        reward_kind=reward_kind,
        batch_size=batch_size,
        decay_steps=decay_steps,
        num_followers=num_followers,
        with_baseline=with_baseline,
        summary_dir=os.path.join(output_dir, 'train-summary-user_idx-{}/train'.format(user_idx)),
        save_dir=save_dir,
        set_wt_zero=with_zero_wt,
    )

    config = tf.ConfigProto(
        allow_soft_placement=True,
        log_device_placement=log_device_placement
    )
    config.gpu_options.allow_growth = allow_growth

    sess = tf.Session(config=config)
    trainer = EB.ExpRecurrentTrainer(
        sim_opts=sim_opts,
        _opts=trainer_opts,
        sess=sess
    )
    print(_now(), 'trainer made.')

    sink_ids = one_user_data['sim_opts'].sink_ids
    window_len = (one_user_data['duration'] / one_user_data['num_other_posts']) * N
    lifetimes = defaultdict(lambda: algo_lifetime_frac * window_len)

    algo_feed_seed = 42 + 1
    algo_feed_args = ES.make_freq_prefs(
        one_user_data=one_user_data,
        sink_ids=sink_ids,
        src_lifetime_dict=lifetimes
    )

    user_opt_dict = {}
    user_opt_dict['trainer_opts_dict'] = trainer_opts._get_dict()
    user_opt_dict['num_other_broadcasters'] = len(trainer.sim_opts.other_sources)
    user_opt_dict['hidden_dims'] = trainer.num_hidden_states
    user_opt_dict['num_followers'] = len(trainer.sim_opts.sink_ids)
    user_opt_dict['seed'] = trainer_opts_seed

    user_opt_dict['algo_feed'] = algo_feed
    user_opt_dict['algo_feed_seed'] = algo_feed_seed
    user_opt_dict['algo_feed_args'] = algo_feed_args
    user_opt_dict['algo_c'] = algo_c
    user_opt_dict['algo_with_approx_rewards'] = with_approx_rewards
    user_opt_dict['algo_reward_time_steps'] = reward_time_steps

    # Needed for experiments later
    user_opt_dict['N'] = N
    user_opt_dict['q'] = q

    os.makedirs(trainer.save_dir, exist_ok=True)
    with open(os.path.join(trainer.save_dir, 'user_opt_dict.dill'), 'wb') as f:
        dill.dump(user_opt_dict, f)

    trainer.initialize(finalize=True)

    if should_restore and os.path.exists(save_dir):
        try:
            trainer.restore()
        except (FileNotFoundError, AttributeError):
            warnings.warn('"{}" exists, but no save files were found. Not restoring.'
                          .format(save_dir))

    global_steps = trainer.sess.run(trainer.global_step)
    if global_steps > until:
        print(
            _now(),
            'Have already run {} > {} iterations, not going further.'
            .format(global_steps, until)
        )

    op_dir = os.path.join(output_dir, 'u_data-user_idx-{}/'.format(user_idx))
    os.makedirs(op_dir, exist_ok=True)

    # start_time, end_time = one_user_data['user_event_times'][0], one_user_data['user_event_times'][-1]
    if algo_feed:
        u_datas = [EB.get_real_data_eval_algo(
            trainer=trainer,
            one_user_data=one_user_data,
            N=N,
            batch_c=algo_c,
            algo_feed_args=algo_feed_args,
            reward_time_steps=reward_time_steps,
            with_approx_rewards=with_approx_rewards
        )]
    else:
        u_datas = [EB.get_real_data_eval(trainer, one_user_data, N=N, with_red_queen=True)]

    log_eval(u_datas[-1])

    for epoch in range(epochs):
        # Ensure that the output is pushed to the SLURM file.
        sys.stdout.flush()
        step = trainer.sess.run(trainer.global_step)
        with_df = (epoch == epochs - 1) or (step > until)

        if algo_feed:
            EB.train_real_data_algo(
                trainer=trainer,
                N=N,
                one_user_data=one_user_data,
                num_iters=num_iters,
                init_seed=42 + user_idx,
                algo_feed_args=algo_feed_args,
                with_summaries=with_summaries,
                with_approx_rewards=with_approx_rewards,
                batch_c=algo_c,
                reward_time_steps=reward_time_steps,
            )
            u_datas.append(
                EB.get_real_data_eval_algo(
                    trainer=trainer,
                    one_user_data=one_user_data,
                    N=N,
                    with_df=with_df,
                    algo_feed_args=algo_feed_args,
                    reward_time_steps=reward_time_steps,
                    with_approx_rewards=with_approx_rewards,
                    batch_c=algo_c,
                )
            )
        else:
            EB.train_real_data(
                trainer,
                N=N,
                one_user_data=one_user_data,
                num_iters=num_iters,
                init_seed=42 + user_idx,
                with_summaries=with_summaries
            )
            u_datas.append(
                EB.get_real_data_eval(
                    trainer,
                    one_user_data,
                    N=N,
                    with_red_queen=True,
                    with_df=with_df
                )
            )

        log_eval(u_datas[-1])

        if (epoch + 1) % save_every == 0 or with_df:
            file_name = 'u_data-{}.dill' if not with_df else 'u_data-{}-final.dill'
            op_file_name = os.path.join(op_dir, file_name.format(step))
            with open(op_file_name, 'wb') as f:
                dill.dump(u_datas, f)

            print(_now(), 'Saved: {}'.format(op_file_name))

            if step > until:
                print(
                    _now(),
                    'Have already run {} > {} iterations, not going further.'
                    .format(step, until)
                )
                break
示例#3
0
def cmd(initial_difficulty_csv, alpha, beta, save_dir, T, tau, only_cpu, batches, verbose):
    """Read the initial difficulty of items from INITIAL_DIFFICULTY_CSV, use
    the ALPHA and BETA specified, restore the teacher model from the given
    SAVE_DIR and compare the performance of the method against various
    baselines."""
    with open(initial_difficulty_csv, 'r') as f:
        n_0s = [float(x.strip()) for x in f.readline().split(',')]

    num_items = len(n_0s)

    init_seed = 1337
    scenario_opts = {
        'T': T,
        'tau': tau,
        'n_0s': n_0s,
        'alphas': np.ones(num_items) * alpha,
        'betas': np.ones(num_items) * beta,
    }

    summary_dir = None

    teacher_opts = ET.mk_def_teacher_opts(
        num_items=num_items,
        hidden_dims=8,
        save_dir=save_dir,
        only_cpu=only_cpu,
        T=T,
        tau=tau,
        scenario_opts=scenario_opts,

        # The values here do not matter because we will not be training
        # the NN here.
        summary_dir=summary_dir,
        learning_rate=0.02,
        decay_rate=0.02,
        batch_size=32,
        q=0.0001,
        q_entropy=0.002,
        learning_bump=1.0,
        decay_steps=10,
    )

    config = tf.ConfigProto(
        allow_soft_placement=True,
        log_device_placement=False
    )
    config.gpu_options.allow_growth = True

    sess = tf.Session(config=config)
    teacher = ET.ExpRecurrentTeacher(
        _opts=teacher_opts,
        sess=sess,
        num_items=num_items
    )

    teacher.initialize(finalize=True)

    # Restores to the latest version.
    teacher.restore()

    global_steps = teacher.sess.run(teacher.global_step)
    if verbose:
        print(_now(), "Restored successfully to step {}.".format(global_steps))

    # Evaluating the performance of RL.
    _f_d, RL_test_scens = ET.get_test_feed_dicts(teacher, range(init_seed, init_seed + batches))
    RL_rewards = [s.reward() for s in RL_test_scens]

    num_test_reviews = np.mean([x.get_num_events() for x in RL_test_scens])

    # Performance using uniform baseline
    rets_unif = [
        ET.uniform_random_baseline(
            scenario_opts, target_reviews=num_test_reviews,
            seed=seed + 8, verbose=False
        ) for seed in range(init_seed, init_seed + batches)
    ]

    # Performance if using Memorize.
    q_MEM = ET.sweep_memorize_q(scenario_opts, num_test_reviews, q_init=1.0,
                                verbose=verbose)

    rets_mem = [
        ET.memorize_baseline(
            scenario_opts, q_max=q_MEM,
            seed=seed + 8, verbose=False)
        for seed in range(init_seed, init_seed + batches)
    ]

    # Plotting reward (i.e. recall at T + tau)

    plt.figure()
    latexify(fig_width=2.25, largeFonts=False)
    colors = sns.color_palette(n_colors=3)

    Y = {
        'RL': RL_rewards,
        'MEM': [x['reward'] / (-100) for x in rets_mem],
        'Uniform': [[x['reward'] / (-100) for x in rets_unif]],
    }

    box = plt.boxplot([Y['RL'], Y['MEM'], Y['Uniform']],
                      whis=0,
                      showmeans=True,
                      showfliers=False,
                      showcaps=False,
                      patch_artist=True,
                      medianprops={'linewidth': 1.0},
                      boxprops={'linewidth': 1.0, 'edgecolor': colors[0],
                                'facecolor': colors[1], 'alpha': 0.3},
                      whiskerprops={'linewidth': 0})

    for idx in range(len(colors)):
        box['boxes'][idx].set_facecolor(colors[idx])
        box['boxes'][idx].set_edgecolor(colors[idx])
        box['means'][idx].set_markersize(5)
        box['means'][idx].set_markerfacecolor(colors[idx])
        box['medians'][idx].set_color(colors[idx])

    plt.yticks([0.0, 0.25, 0.50], ['0\%', '25\%', '50\%'])
    plt.xticks([1, 2, 3], [r'\textsc{TPPRL}', r'\textsc{Memorize}', 'Uniform'])
    plt.tight_layout()
    format_axes(plt.gca())

    plot_base = './output-plots/'
    os.makedirs(plot_base, exist_ok=True)

    plt.savefig(os.path.join(plot_base, 'recall-results-{}-{}.pdf'.format(T, tau)),
                bbox_inches='tight', pad_inches=0)

    # Plotting item difficulty

    plt.figure()
    latexify(fig_width=2.25, largeFonts=False)
    colors = sns.color_palette(n_colors=3)

    Y = {
        'RL': [scenario_opts['n_0s'][item]  for x in RL_test_scens for item in x.items],
        'MEM': [scenario_opts['n_0s'][item]  for x in rets_mem for item, _ in x['review_timings']],
        'Uniform': [scenario_opts['n_0s'][item]  for x in rets_unif for item, _ in x['review_timings']]
    }

    box = plt.boxplot([Y['RL'], Y['MEM'], Y['Uniform']],
                      whis=0,
                      showmeans=True,
                      showfliers=False,
                      showcaps=False,
                      patch_artist=True,
                      medianprops={'linewidth': 1.0},
                      boxprops={'linewidth': 1.0, 'edgecolor': colors[0],
                                'facecolor': colors[1], 'alpha': 0.3},
                      whiskerprops={'linewidth': 0})

    for idx in range(len(colors)):
        box['boxes'][idx].set_facecolor(colors[idx])
        box['boxes'][idx].set_edgecolor(colors[idx])
        box['means'][idx].set_markersize(5)
        box['means'][idx].set_markerfacecolor(colors[idx])
        box['medians'][idx].set_color(colors[idx])

    plt.xticks([1, 2, 3], [r'\textsc{TPPRL}', r'\textsc{Memorize}', 'Uniform'])
    plt.tight_layout()
    format_axes(plt.gca())
    plt.savefig(os.path.join(plot_base, 'item-difficulty.pdf'), bbox_inches='tight', pad_inches=0)

    # Plotting reviews per day
    RL_times = [np.floor(t) for s in RL_test_scens for t in np.cumsum(s.time_deltas)]
    MEM_times = [np.floor(t) for x in rets_mem for _, t in x['review_timings']]

    plt.figure()
    latexify(fig_width=2.25, largeFonts=False)

    c1, c2 = sns.color_palette(n_colors=2)

    f, (a1, a2) = plt.subplots(2, 1)
    a1.hist(RL_times, bins=np.arange(T + 1), density=True, color=c1, alpha=0.5, label='RL')
    a1.set_yticks([.04, .08])
    a1.set_yticklabels([r'4\%', r'8\%'])
    a1.set_ylabel('TPPRL')
    a1.set_ylim([0.04, 0.08])
    a1.set_xticks([0.5, 3.5, 6.5, 9.5, 13.5])
    a1.set_xticklabels([1, 4, 7, 10, 14])
    format_axes(a1)

    a2.hist(MEM_times, bins=np.arange(T + 1), density=True, color=c2, alpha=0.5, label=r'\textsc{Mem}')
    a2.set_yticks([0, .04, .08], [r'0\%', r'4\%', r'8\%'])
    a2.set_xticks([0.5, 3.5, 6.5, 9.5, 13.5])
    a2.set_xticklabels([1, 4, 7, 10, 14])
    a2.set_ylabel(r'\textsc{Memorize}')
    a2.set_ylim([0.04, 0.08])
    a2.set_yticks([.04, .08])
    a2.set_yticklabels([r'4\%', r'8\%'])
    format_axes(a2)

    # plt.legend(ncol=2, bbox_to_anchor=(0, 0, 1, 1.1))
    plt.tight_layout()
    plt.savefig(os.path.join(plot_base, 'reviews-every-day.pdf'), bbox_inches='tight', pad_inches=0)

    print(_now(), 'Done.')
示例#4
0
def cmd(initial_difficulty_csv, alpha, beta, output_dir, should_restore, T,
        tau, with_summaries, summary_suffix, only_cpu, q, q_entropy, epochs,
        num_iters, save_every, until, with_MP, with_recall_probs,
        with_zero_wt):
    """Read initial difficulty of items from INITIAL_DIFFICULTY_CSV, ALPHA and
    BETA, train an optimal teacher and save the results to output_dir."""

    with open(initial_difficulty_csv, 'r') as f:
        n_0s = [float(x.strip()) for x in f.readline().split(',')]

    num_items = len(n_0s)

    scenario_opts = {
        'T': T,
        'tau': tau,
        'n_0s': n_0s,
        'alphas': np.ones(num_items) * alpha,
        'betas': np.ones(num_items) * beta,
    }

    summary_dir = os.path.join(output_dir,
                               'summary/train-{}'.format(summary_suffix))
    save_dir = os.path.join(output_dir, 'save/')

    os.makedirs(summary_dir, exist_ok=True)
    os.makedirs(save_dir, exist_ok=True)

    teacher_opts = ET.mk_def_teacher_opts(
        num_items=num_items,
        hidden_dims=8,
        learning_rate=0.02,
        decay_rate=0.02,
        summary_dir=summary_dir,
        save_dir=save_dir,
        batch_size=32,
        only_cpu=only_cpu,
        T=T,
        tau=tau,
        q=q,
        q_entropy=q_entropy,
        learning_bump=1.0,
        decay_steps=10,
        scenario_opts=scenario_opts,
        set_wt_zero=with_zero_wt,
    )

    config = tf.ConfigProto(allow_soft_placement=True,
                            log_device_placement=False)
    config.gpu_options.allow_growth = True

    sess = tf.Session(config=config)
    teacher = ET.ExpRecurrentTeacher(_opts=teacher_opts,
                                     sess=sess,
                                     num_items=num_items)

    teacher.initialize(finalize=True)

    if should_restore and os.path.exists(save_dir):
        try:
            teacher.restore()
            global_steps = teacher.sess.run(teacher.global_step)
            print(_now(),
                  "Restored successfully to step {}.".format(global_steps))
        except (FileNotFoundError, AttributeError):
            warnings.warn(
                '"{}" exists, but no save files were found. Not restoring.'.
                format(save_dir))

    global_steps = teacher.sess.run(teacher.global_step)
    if global_steps > until:
        print(
            _now(),
            'Have already run {} > {} iterations, not going further.'.format(
                global_steps, until))

    for epoch in range(epochs):
        sys.stdout.flush()

        teacher.train_many(
            num_iters=num_iters,
            init_seed=42,
            with_summaries=with_summaries,
            with_MP=with_MP,
            with_memorize_loss=False,
            save_every=save_every,
            with_recall_probs=with_recall_probs,
        )

        step = teacher.sess.run(teacher.global_step)
        if step > until:
            print(
                _now(),
                'Have already run {} > {} iterations, not going further.'.
                format(step, until))
            break