def gratArray(outerrad, hubdist, angle, inc, l=95.): """Trace rays leaving SPO petal to the fanned grating array. Start with outermost radius and rotate grating array about the hub. Define outermost grating position by max ray radius at desired axial height. Rays have been traced to bottom of outermost grating. """ #Put origin at bottom of outermost grating PT.transform(outerrad, 0, 0, 0, 0, 0) #Go to proper incidence angle of grating PT.transform(0, 0, 0, 0, 0, -pi / 2) PT.transform(0, 0, 0, -pi / 2 - angle + inc, 0, 0) #Go to hub PT.transform(0, hubdist, 0, 0, 0, 0) #Trace out gratings until no rays hit a grating #Flat #Indices #Reflect #Apply Grating #Next PT.flat() ind = np.logical_and(PT.y < -hubdist, PT.y > -l - hubdist) ang = l * sin(inc) / hubdist i = 0 while np.sum(ind) > 0: i = i + 1 PT.reflect(ind=ind) PT.radgrat(0., 160. / hubdist, 0, 1., ind=ind) PT.transform(0, 0, 0, ang, 0, 0) PT.flat() ind = np.logical_and(PT.y < -hubdist, PT.y > -l - hubdist) sys.stdout.write('%i \r' % i) sys.stdout.flush() pdb.set_trace()
def primMaskTrace(fold, primary, woltVignette=True, foldrot=0.): #Get Wolter parameters alpha, p, d, e = conicsolve.woltparam(220., 8400.) primfoc = conicsolve.primfocus(220., 8400.) #Trace to fold mirror #translate to center of fold mirror PT.transform(0., 85.12, primfoc - 651.57 + 85.12, 0, 0, 0) #rotate so surface normal points in correct direction PT.transform(0, 0, 0, -3 * pi / 4, 0, 0) PT.transform(0, 0, 0, 0, 0, pi) #trace to fold flat PT.flat() #Introduce fold misalignment PT.transform(*fold) PT.zernsurfrot(foldsag, foldfig, 406. / 2, -174.659 * pi / 180 + foldrot) PT.itransform(*fold) PT.reflect() PT.transform(0, 0, 0, 0, 0, -pi) PT.transform(0, 0, 0, pi / 4, 0, 0) #Translate to optical axis mid-plane, then down to image of #primary focus, place primary mirror and trace PT.transform(0, 85.12, 651.57 - 85.12, 0, 0, 0) PT.flat() ## pdb.set_trace() rt = conicsolve.primrad(8475., 220., 8400.) PT.transform(0, -rt, 75., 0, 0, 0) PT.transform(*primary) PT.transform(0, rt, -8475., 0, 0, 0) ## PT.wolterprimary(220.,8400.) PT.primaryLL(220., 8400., 8525., 8425., 30. * np.pi / 180., pcoeff, pax, paz) if woltVignette is True: ind = logical_and(PT.z < 8525., PT.z > 8425.) PT.vignette(ind=ind) PT.reflect() PT.transform(0, -rt, 8475., 0, 0, 0) PT.itransform(*primary) PT.transform(0, rt, -8475., 0, 0, 0) #Move back up to mask plane and trace flat PT.transform(0, 0, 8400. + 134.18, 0, 0, 0) PT.flat() ## pdb.set_trace() #Rays should now be at Hartmann mask plane return
def setupSource(wave,N,radius=450.,focal=8000.,scatter=50e-6,\ gwidth=25.,glength=32.,pitch=0.,yaw=0.,roll=0.): """Set up converging beam with some scatter. Idea is to place a grating at radius and focal length with an incidence angle of 1.5 degrees """ #Setup rays over grating surface PT.x = np.random.uniform(low=-gwidth / 2, high=gwidth / 2, size=N) PT.y = np.random.uniform(low=-glength / 2, high=glength / 2, size=N) PT.z = np.repeat(0., N) PT.l = np.zeros(N) PT.m = np.zeros(N) PT.n = np.zeros(N) PT.ux = np.zeros(N) PT.uy = np.zeros(N) PT.uz = np.repeat(1., N) #Transform to nominal focus to set ray cosines PT.transform(0, 0, 0, -88.5 * np.pi / 180, 0, 0) PT.transform(0, radius, -focal, 0, 0, 0) rad = np.sqrt(PT.x**2 + PT.y**2 + PT.z**2) PT.l = -PT.x / rad PT.m = -PT.y / rad PT.n = -PT.z / rad #Add scatter PT.l = PT.l + scatter / 10. * np.random.normal(size=N) PT.m = PT.m + scatter * np.random.normal(size=N) PT.n = -np.sqrt(1. - PT.l**2 - PT.m**2) #Go back to plane of of grating PT.transform(0, -radius, focal, 0, 0, 0) PT.transform(0, 0, 0, 88.5 * np.pi / 180, 0, np.pi) #Place grating and diffract hubdist = np.sqrt(radius**2 + focal**2) * np.cos(1.5 * np.pi / 180) PT.flat() PT.reflect() PT.transform(0, 0, 0, pitch, roll, yaw) PT.radgrat(hubdist, 160. / hubdist, 1, wave) PT.itransform(0, 0, 0, pitch, roll, yaw) #Go to focal plane PT.transform(0, 0, 0, np.pi / 2, 0, 0) PT.transform(0, 0, -hubdist, 0, 0, 0) PT.transform(0, 0, 27.27727728 - .04904905, 0, 0, 0) PT.flat() #plt.plot(PT.x,PT.y,'.') return PT.centroid()
def arc(inc, yaw, hubdist, wave, order, dpermm): """Return x and y positions of diffraction arc as a function of wavelength for a given order""" #Set up source ray PT.circularbeam(0., 1) #Transform to grating frame PT.transform(0, 0, 0, pi / 2 + inc, 0, 0) PT.transform(0, 0, 0, 0, 0, yaw) PT.flat() #Apply grating PT.reflect() PT.radgrat(hubdist, dpermm, order, wave) #Go to focus PT.transform(0, 0, 0, 0, 0, -yaw) PT.transform(0, hubdist, 0, 0, 0, 0) PT.transform(0, 0, 0, pi / 2, 0, 0) PT.flat() #Get ray positions return PT.x[0], PT.y[0]
def traceFromMask(N, numholes, cda, fold, retro, primary, foldrot=0., retrorot=0.): #Vignette at proper hole h = hartmannMask() ind = h == N PT.vignette(ind=ind) #Continue trace up to retro and back to CDA PT.transform(0, -123.41, 1156.48 - 651.57 - 134.18, 0, 0, 0) PT.flat() PT.transform(0, 0, 0, pi, 0, 0) PT.transform(*retro) PT.zernsurfrot(retrosag, retrofig, 378. / 2, -8.993 * pi / 180 + retrorot) PT.itransform(*retro) PT.reflect() PT.transform(0, 0, 0, -pi, 0, 0) PT.transform(0, 123.41, -1156.48 + 651.57 + 134.18, 0, 0, 0) PT.flat() h = hartmannMask() ind = h == N PT.vignette(ind=ind) PT.transform(0, 0, -134.18, 0, 0, 0) rt = conicsolve.primrad(8475., 220., 8400.) PT.transform(0, -rt, 75., 0, 0, 0) PT.transform(*primary) PT.transform(0, rt, -8475., 0, 0, 0) PT.wolterprimary(220., 8400.) ind = logical_and(PT.z < 8525., PT.z > 8425.) PT.vignette(ind=ind) PT.reflect() PT.transform(0, -rt, 8475., 0, 0, 0) PT.itransform(*primary) PT.transform(0, rt, -8475., 0, 0, 0) PT.transform(0,-85.12,8400.-651.57+85.12\ ,0,0,0) PT.transform(0, 0, 0, -pi / 4, 0, 0) PT.transform(0, 0, 0, 0, 0, pi) PT.flat() PT.transform(*fold) PT.zernsurfrot(foldsag, foldfig, 406. / 2, -174.659 * pi / 180 + foldrot) PT.itransform(*fold) PT.reflect() PT.transform(0, 0, 0, 0, 0, -pi) PT.transform(0, 0, 0, 3 * pi / 4, 0, 0) PT.transform(0,-85.12,-85.12-(conicsolve.primfocus(220.,8400.)-651.57)\ ,0,0,0) PT.transform(*cda) PT.flat() return
def traceSPO(R, L, F, N, M, span=pi / 12, d=.605, t=.775): """Trace SPO surfaces sequentially. Collect rays from each SPO shell and set them to the PT rays at the end. Start at the inner radius, use the wafer and pore thicknesses to vignette and compute the next radius, loop while radius is less than Rout. """ #Ray bookkeeping arrays tx = np.zeros(M * N) ty = np.zeros(M * N) tz = np.zeros(M * N) tl = np.zeros(M * N) tm = np.zeros(M * N) tn = np.zeros(M * N) tux = np.zeros(M * N) tuy = np.zeros(M * N) tuz = np.zeros(M * N) #Loop through shell radii and collect rays for i in range(M): #Set up source annulus PT.subannulus(R[i], R[i] + d, span, N) #Transform rays to be above xy plane PT.n = -PT.n PT.transform(0, 0, -100., 0, 0, 0) #Trace to primary PT.spoPrimary(R[i], F) PT.reflect() #Vignette ind = np.logical_and(PT.z <= L[i], PT.z >= 0.) if np.sum(ind) < N: pdb.set_trace() PT.vignette(np.logical_and(PT.z <= L[i], PT.z >= 0.)) #Trace to secondary PT.spoSecondary(R[i], F) PT.reflect() #Vignette ind = np.logical_and(PT.z <= 0., PT.z >= -L[i]) if np.sum(ind) < N: pdb.set_trace() PT.vignette(ind) #Collect rays try: tx[i * N:(i + 1) * N] = PT.x ty[i * N:(i + 1) * N] = PT.y tz[i * N:(i + 1) * N] = PT.z tl[i * N:(i + 1) * N] = PT.l tm[i * N:(i + 1) * N] = PT.m tn[i * N:(i + 1) * N] = PT.n tux[i * N:(i + 1) * N] = PT.ux tuy[i * N:(i + 1) * N] = PT.uy tuz[i * N:(i + 1) * N] = PT.uz except: pdb.set_trace() #Set to PT rays try: PT.x = tx PT.y = ty PT.z = tz PT.l = tl PT.m = tm PT.n = tn PT.ux = tux PT.uy = tuy PT.uz = tuz except: pdb.set_trace() return
def traceCyl(align): """Traces a cylindrical approximation to Wolter I geometry Assumes 1 m radius of curvature in accordance with OAB samples align is a 12 element array giving the transformations to be applied to each mirror Uses identical set of rays each run defined upon module import Adds a restraint such that any vignetting over 25% results in a huge merit function """ #Set up source np.random.seed(5) a, p, d, e = con.woltparam(1000., 10000.) r0 = con.primrad(10025., 1000., 10000.) r1 = con.primrad(10125., 1000., 10000.) dphi = 100. / 1000. PT.subannulus(r0, r1, dphi, 10**4) PT.transform(0, 0, 0, np.pi, 0, 0) PT.transform(0, 0, -10500., 0, 0, 0) #Trace primary cylinder: go to tangent point at center #of mirror and then rotate to cone angle, then move #to new cylinder axis and tracecyl rt = con.primrad(10075., 1000., 10000.) PT.transform(rt, 0, 0, 0, a, 0) PT.transform(*align[:6]) PT.transform(0, 0, 0, np.pi / 2, 0, 0) PT.transform(-1000., 0, 0, 0, 0, 0) PT.cyl(1000.) #Vignette rays missing physical surface ind = np.logical_and(abs(PT.z) < 50., abs(PT.y) < 50.) PT.vignette(ind=ind) #Reflect and reverse transformations PT.reflect() PT.transform(1000., 0, 0, 0, 0, 0) PT.itransform(0, 0, 0, np.pi / 2, 0, 0) PT.itransform(*align[:6]) PT.itransform(rt, 0, 0, 0, a, 0) #Trace secondary cylinder: same principle as before rt = con.secrad(9925., 1000., 10000.) PT.transform(0, 0, -150., 0, 0, 0) PT.transform(rt, 0, 0, 0, 3 * a, 0) PT.transform(*align[6:]) PT.transform(0, 0, 0, np.pi / 2, 0, 0) PT.transform(-1000., 0, 0, 0, 0, 0) PT.cyl(1000.) #Vignette rays missing physical surface ind = np.logical_and(abs(PT.z) < 50., abs(PT.y) < 50.) PT.vignette(ind=ind) #Reflect and reverse transformations PT.reflect() PT.transform(1000., 0, 0, 0, 0, 0) PT.itransform(0, 0, 0, np.pi / 2, 0, 0) PT.itransform(*align[6:]) PT.itransform(rt, 0, 0, 0, 3 * a, 0) #Go down to nominal focus PT.transform(0, 0, -9925., 0, 0, 0) PT.flat() #Compute merit function nom = PT.rmsCentroid() / 10**4 * 180. / np.pi * 60**2 nom = nom + max((9500. - np.size(PT.x)), 0.) return nom
def traceWSShell(num,theta,r0,z0,phigh,plow,shigh,slow,\ energy,rough,chaseFocus=False,bestFocus=False): """Trace a WS mirror pair with 10 m focal length and mirror axial cutoffs defined by phigh,plow """ #Define annulus of source rays a,p,d,e = con.woltparam(r0,z0) r1 = PT.wsPrimRad(plow,1.,r0,z0)#np.tan(a/2.)*(plow-10000.) + r0 r2 = PT.wsPrimRad(phigh,1.,r0,z0)#np.tan(a/2.)*(phigh-10000.) + r0 rays = PT.annulus(r1,r2,num) PT.transform(rays,0,0,0,np.pi,0,0) PT.transform(rays,0,0,z0,0,0,0) #Trace to primary PT.wsPrimary(rays,r0,z0,1.) #Handle vignetting ind = np.logical_and(rays[3]<phigh,rays[3]>plow) rays = PT.vignette(rays,ind=ind) #Vignette rays hitting backside of mirror dot = rays[4]*rays[7]+rays[5]*rays[8]+rays[6]*rays[9] ind = dot < 0. rays = PT.vignette(rays,ind=ind) #If all rays are vignetted, return if np.size(rays[1]) < 1: return 0.,0.,0. #Apply pointing error rays = [rays[0],rays[1],rays[2],rays[3],\ rays[4]+np.sin(theta),rays[5],-np.sqrt(1-np.sin(theta)**2),\ rays[7],rays[8],rays[9]] ## PT.l = PT.l + np.sin(theta) ## PT.n = -np.sqrt(1 - PT.l**2) #Reflect PT.reflect() #Compute mean incidence angle for reflectivity ang = np.abs(np.mean(np.arcsin(dot))) #radians refl1 = CXCreflIr(ang,energy,rough) #Total rays entering primary aperture N1 = np.size(rays[1]) #Trace to secondary PT.wsSecondary(r0,z0,1.) #Vignette anything outside the physical range of the mirror ind = np.logical_and(rays[3]>slow,rays[3]<shigh) rays = PT.vignette(rays,ind=ind) #Vignette anything hitting the backside dot = rays[4]*rays[7]+rays[5]*rays[8]+rays[6]*rays[9] ind = dot < 0. rays = PT.vignette(rays,ind=ind) if np.size(rays[1]) < 1: return 0.,0.,0. PT.reflect() #Compute mean incidence angle for reflectivity ang = np.abs(np.mean(np.arcsin(dot))) #radians refl2 = CXCreflIr(ang,energy,rough) #Trace to focal plane rays = PT.flat(rays) ## #Find Chase focus ## delta = 0. ## if chaseFocus or bestFocus: ## cx,cy = PT.centroid() ## r = np.sqrt(cx**2+cy**2) ## delta = .0625*(1.+1)*(r**2*(phigh-plow)/10000.**2)\ ## *(1/np.tan(a))**2 ## PT.transform(0,0,delta,0,0,0) ## PT.flat() ## ## #Find best focus ## delta2 = 0. ## delta3 = 0. ## if bestFocus: ## try: ## tran.focusI(rays,weights= ## except: ## pdb.set_trace() ## PT.flat() return refl1*refl2,rays
def sphericalNodes(rin,z0,fov,Nshells,N): """This function will iteratively scan node positions about a sphere around the focus. Node will start in obvious vignetting position. Extreme rays will be traced including FoV. Node will be nudged outward until vignetting no longer occurs. Node will then be moved by the designated mechanical gap. Then the next node is traced in the same fashion. Assumptions: 50 mm symmetric gap """ #Bookkeeping parameters f = np.sqrt(rin**2+z0**2) fov = fov/60.*np.pi/180. #fov to radians zlist = [] rlist = [] for i in range(Nshells): #Starting radius for next shell node rstart = PT.wsPrimRad(z0+225.,1.,rin,z0) #Reduce rstart until vignetting is reached flag = 0 while flag==0: zstart = np.sqrt(f**2-rstart**2) #Set up rays r1 = PT.wsPrimRad(zstart+25.,1.,rstart,zstart) r2 = PT.wsPrimRad(zstart+225.,1.,rstart,zstart) PT.pointsource(0.,N) PT.z = np.repeat(10500.,N) PT.x = np.linspace(r1,r2,N) PT.n = np.repeat(-1.,N) #Perform trace and add FoV deflections to rays PT.wsPrimary(rstart,zstart,1.) PT.l = np.repeat(np.sin(fov),N) PT.n = -np.sqrt(1 - PT.l**2) #Verify that rays do not hit prior primary PT.wsPrimary(rin,z0,1.) if np.sum(PT.z<z0+225.) != 0: #Ray has hit print 'Ray hits prior primary!' flag = 1 #Verify that rays do not hit prior secondary PT.wsPrimary(rstart,zstart,1.) PT.reflect() PT.wsSecondary(rstart,zstart,1.) PT.reflect() PT.wsSecondary(rin,z0,1.) if np.sum(PT.z > z0-225.) != 0: print 'Ray hits prior secondary!' flag = 1 #Look at other deflection PT.pointsource(0.,N) PT.z = np.repeat(10500.,N) PT.x = np.linspace(r1,r2,N) PT.n = np.repeat(-1.,N) #Perform trace and add FoV deflections to rays PT.wsPrimary(rstart,zstart,1.) PT.l = np.repeat(-np.sin(fov),N) PT.n = -np.sqrt(1 - PT.l**2) #Verify that rays do not hit prior primary PT.wsPrimary(rin,z0,1.) if np.sum(PT.z<z0+225.) != 0: #Ray has hit print 'Ray hits prior primary!' flag = 1 #Verify that rays do not hit prior secondary PT.wsPrimary(rstart,zstart,1.) PT.reflect() PT.wsSecondary(rstart,zstart,1.) PT.reflect() PT.wsSecondary(rin,z0,1.) if np.sum(PT.z > z0-225.) != 0: print 'Ray hits prior secondary!' flag = 1 if flag==0: rstart = rstart - .01 #Take off 10 microns ## sys.stdout.write(str(rstart)+'\n') ## sys.stdout.flush() #Vignetting has been reached, append rstart and zstart #to list of node positions rlist.append(rstart) zlist.append(zstart) rin = rstart z0 = zstart return rlist,zlist
def traceChaseParam(num, psi, theta, alpha, L1, z0, bestFocus=False, chaseFocus=False): """Trace a WS mirror pair using the parameters in Eq. 13 of Chase & VanSpeybroeck Return the RMS radius of the focus Can specify whether to find the best focus or not """ #Define annulus of source rays r0 = np.tan(4 * alpha) * z0 alphap = 2 * alpha / (1 + 1 / psi) r1 = PT.wsPrimRad(z0 + L1, 1., r0, z0) #np.tan(alphap/2.)*L1 + r0 PT.annulus(r0, r1, num) PT.transform(0, 0, 0, np.pi, 0, 0) PT.transform(0, 0, -10000., 0, 0, 0) pdb.set_trace() #Trace to primary PT.wsPrimary(r0, z0, psi) #Handle vignetting PT.vignette() ind = np.logical_and(PT.z < z0 + L1, PT.z > z0) PT.vignette(ind=ind) ## pdb.set_trace() #Apply pointing error PT.l = PT.l + np.sin(theta) PT.n = -np.sqrt(1 - PT.l**2) #Anything hitting backside goes away dot = PT.l * PT.ux + PT.m * PT.uy + PT.n * PT.uz ind = dot < 0. PT.vignette(ind=ind) if np.size(PT.x) < 1: return 0., 0., 0. #Reflect PT.reflect() N1 = np.size(PT.x) #Trace to secondary PT.wsSecondary(r0, z0, psi) #Vignette anything that did not converge PT.vignette() #Vignette anything hitting the backside dot = PT.l * PT.ux + PT.m * PT.uy + PT.n * PT.uz ind = dot < 0. PT.vignette(ind=ind) ## #Vignette anything outside the physical range of the mirror ## ind = np.logical_and(PT.z>z0-L1,PT.z<z0) ## PT.vignette(ind=ind) if np.size(PT.x) < 1: return 0., 0., 0. PT.reflect() #Trace to focal plane PT.flat() cx, cy = PT.centroid() r = np.sqrt(cx**2 + cy**2) #Find best focus delta = 0. if chaseFocus or bestFocus: delta = .0625 * (psi + 1) * (r**2 * L1 / z0**2) * (1 / np.tan(alpha))**2 PT.transform(0, 0, delta, 0, 0, 0) PT.flat() delta2 = 0. delta3 = 0. if bestFocus: try: delta2 = PT.findimageplane(20., 100) PT.transform(0, 0, delta2, 0, 0, 0) delta3 = PT.findimageplane(1., 100) PT.transform(0, 0, delta3, 0, 0, 0) except: pdb.set_trace() PT.flat() return PT.rmsCentroid() / z0, delta + delta2 + delta3, r
def traceWSShell(num,theta,r0,z0,phigh,plow,shigh,slow,\ chaseFocus=False,bestFocus=False): """Trace a WS mirror pair with 10 m focal length and mirror axial cutoffs defined by phigh,plow """ #Define annulus of source rays a, p, d, e = con.woltparam(r0, z0) r1 = PT.wsPrimRad(plow, 1., r0, z0) #np.tan(a/2.)*(plow-10000.) + r0 r2 = PT.wsPrimRad(phigh, 1., r0, z0) #np.tan(a/2.)*(phigh-10000.) + r0 ## r2 = np.mean([r1,r2]) PT.annulus(r1, r2, num) PT.transform(0, 0, 0, np.pi, 0, 0) PT.transform(0, 0, z0, 0, 0, 0) ## pdb.set_trace() #Trace to primary PT.wsPrimary(r0, z0, 1.) #Handle vignetting PT.vignette() ind = np.logical_and(PT.z < phigh, PT.z > plow) PT.vignette(ind=ind) #Vignette rays hitting backside of mirror dot = PT.l * PT.ux + PT.m * PT.uy + PT.n * PT.uz ind = dot < 0. PT.vignette(ind=ind) #If all rays are vignetted, return if np.size(PT.x) < 1: return 0., 0., 0. #Apply pointing error PT.l = PT.l + np.sin(theta) PT.n = -np.sqrt(1 - PT.l**2) #Reflect PT.reflect() #Compute mean incidence angle for reflectivity ## ang = np.abs(np.mean(np.arcsin(dot))) #radians ## refl1 = CXCreflIr(ang,energy,rough) #Total rays entering primary aperture N1 = np.size(PT.x) #Trace to secondary PT.wsSecondary(r0, z0, 1.) #Vignette anything that did not converge PT.vignette() #Vignette anything outside the physical range of the mirror ind = np.logical_and(PT.z > slow, PT.z < shigh) PT.vignette(ind=ind) #Vignette anything hitting the backside dot = PT.l * PT.ux + PT.m * PT.uy + PT.n * PT.uz ind = dot < 0. PT.vignette(ind=ind) if np.size(PT.x) < 1: return 0., 0., 0. PT.reflect() #Compute mean incidence angle for reflectivity ## ang = np.abs(np.mean(np.arcsin(dot))) #radians ## refl2 = CXCreflIr(ang,energy,rough) #Trace to focal plane PT.flat() #Find Chase focus delta = 0. if chaseFocus or bestFocus: cx, cy = PT.centroid() r = np.sqrt(cx**2 + cy**2) delta = .0625*(1.+1)*(r**2*(phigh-plow)/10000.**2)\ *(1/np.tan(a))**2 PT.transform(0, 0, delta, 0, 0, 0) PT.flat() #Find best focus delta2 = 0. delta3 = 0. if bestFocus: try: delta2 = PT.findimageplane(20., 100) PT.transform(0, 0, delta2, 0, 0, 0) delta3 = PT.findimageplane(1., 100) PT.transform(0, 0, delta3, 0, 0, 0) except: pdb.set_trace() PT.flat() #return refl1*refl2 return PT.hpd(), PT.rmsCentroid(), delta
def fullFromMask(N, cda, fold, retro, prim, sec, foldrot=0., retrorot=0.): ## pdb.set_trace() #Vignette at proper hole h = hartmannMask() ind = h == N PT.vignette(ind=ind) #Continue trace up to retro and back to CDA PT.transform(0, -123.41, 1156.48 - 651.57 - 134.18, 0, 0, 0) PT.flat() PT.transform(0, 0, 0, pi, 0, 0) PT.transform(*retro) PT.zernsurfrot(retrosag, retrofig, 378. / 2, -8.993 * pi / 180 + retrorot) PT.itransform(*retro) PT.reflect() PT.transform(0, 0, 0, -pi, 0, 0) #Back to mask PT.transform(0, 123.41, -1156.48 + 651.57 + 134.18, 0, 0, 0) PT.flat() h = hartmannMask() ind = h == N PT.vignette(ind=ind) #Place Wolter surfaces PT.transform(0, 0, -134.18 - 8400., 0, 0, 0) PT.transform(0, -conicsolve.primrad(8425., 220., 8400.), 8425., 0, 0, 0) PT.transform(*prim) PT.itransform(0, -conicsolve.primrad(8425., 220., 8400.), 8425., 0, 0, 0) ## PT.wolterprimary(220.,8400.) PT.primaryLL(220., 8400., 8525., 8425., 30. * np.pi / 180., pcoeff, pax, paz) pdb.set_trace() ind = logical_and(PT.z < 8525., PT.z > 8425.) PT.vignette(ind=ind) PT.transform(0, -conicsolve.primrad(8425., 220., 8400.), 8425., 0, 0, 0) PT.itransform(*prim) PT.itransform(0, -conicsolve.primrad(8425., 220., 8400.), 8425., 0, 0, 0) PT.reflect() #Wolter secondary PT.transform(0, -conicsolve.secrad(8325., 220., 8400.), 8325., 0, 0, 0) PT.transform(*sec) PT.itransform(0, -conicsolve.secrad(8325., 220., 8400.), 8325., 0, 0, 0) PT.woltersecondary(220., 8400.) ind = logical_and(PT.z < 8375., PT.z > 8275.) PT.vignette(ind=ind) PT.reflect() PT.transform(0, -conicsolve.secrad(8325., 220., 8400.), 8325., 0, 0, 0) PT.itransform(*sec) PT.itransform(0, -conicsolve.secrad(8325., 220., 8400.), 8325., 0, 0, 0) ## PT.woltersecondary(220.,8400.) ## ind = logical_and(PT.z<8375.,PT.z>8275.) ## PT.vignette(ind=ind) ## PT.reflect() #Back to fold PT.transform(0,-85.12,8400.-651.57+85.12\ ,0,0,0) PT.transform(0, 0, 0, -pi / 4, 0, 0) PT.transform(0, 0, 0, 0, 0, pi) PT.flat() PT.transform(*fold) PT.zernsurfrot(foldsag, foldfig, 406. / 2, -174.659 * pi / 180 + foldrot) PT.itransform(*fold) PT.reflect() PT.transform(0, 0, 0, 0, 0, -pi) #Back to CDA PT.transform(0, 0, 0, 3 * pi / 4, 0, 0) PT.transform(0,-85.12,-85.12-8400.+651.57\ ,0,0,0) PT.transform(*cda) PT.flat() return