示例#1
0
    def sort(self, column_name):
        """
		Sorts the data frame by the specified column.

		Parameters
		----------
		column_name: string
			Column name to sort

		Returns
		-------
		sort: DFTrack
			DFTrack sorted
		"""
        if isinstance(column_name, list):
            for column in column_name:
                if column not in self.df:
                    raise TrackException('Column name not found',
                                         "'%s'" % column)
        else:
            if column_name not in self.df:
                raise TrackException('Column name not found',
                                     "'%s'" % column_name)

        return self.__class__(self.df.sort_values(column_name), list(self.df))
示例#2
0
    def readGPXFile(self, filename):
        try:
            with open(filename, "r") as f:
                prev_point = None
                head, tail = os.path.split(filename)
                code_route = tail.replace(".gpx", "")
                try:
                    gpx = gpxpy.parse(f)
                    for point in gpx.walk(only_points=True):
                        speed = point.speed_between(prev_point)
                        if speed is None:
                            speed = 0

                        timeDifference = point.time_difference(prev_point)
                        if timeDifference is None:
                            timeDifference = 0

                        distance = point.distance_3d(prev_point)
                        if not distance:
                            distance = point.distance_2d(prev_point)
                        if distance is None:
                            distance = 0

                        self.points_list.append([
                            code_route, point.latitude, point.longitude,
                            point.elevation, point.time, speed, timeDifference,
                            distance, gpx.name
                        ])

                        prev_point = point
                except Exception as e:
                    raise TrackException(
                        'GPX file "' + filename + '" malformed', e)
        except FileNotFoundError as e:
            raise TrackException('GPX file "' + filename + '" not found', e)
示例#3
0
    def concat(self, dfTrack):
        """
		Concatenate DFTrack objects with 'self'

		Parameters
		----------
		dfTrack: DFTrack or list of DFTrack
			The ones that will be joined with 'self'
			
		Returns
		-------
		df_concat: DFTrack
			A DFTrack with the all the DFTrack concatenated
		"""
        if not isinstance(dfTrack, list):
            # If it is not a list of DFTrack, make a list of one element
            dfTrack = [dfTrack]

        df_concat = [self.df]  # First element is 'self'

        # From list of 'dfTrack', create a list of their dataframes
        for df in dfTrack:
            if not isinstance(df, DFTrack):
                raise TrackException("Parameter must be a 'DFTrack' object",
                                     '%s found' % type(df))

            df_concat.append(df.df)

        return self.__class__(pd.concat(df_concat))
示例#4
0
    def setColors(self, column_name, individual_tracks=True):
        if column_name not in self.df:
            raise TrackException('Column name not found', "'%s'" % column_name)

        df = self.df.copy()

        df_colors = pd.DataFrame()

        if individual_tracks:
            grouped = df['CodeRoute'].unique()

            for name in grouped:
                df_slice = df[df['CodeRoute'] == name]
                df_slice = df_slice.reset_index(drop=True)

                min = df_slice[column_name].min()
                max = df_slice[column_name].max()

                df_slice['Color'] = df_slice[column_name].apply(trk_utils.rgb,
                                                                minimum=min,
                                                                maximum=max)
                df_colors = pd.concat([df_colors, df_slice])

            df_colors = df_colors.reset_index(drop=True)
            return self.__class__(df_colors, list(df_colors))
        else:
            min = df[column_name].min()
            max = df[column_name].max()

            df['Color'] = df[column_name].apply(trk_utils.rgb,
                                                minimum=min,
                                                maximum=max)
            df = df.reset_index(drop=True)

            return self.__class__(df, list(df))
示例#5
0
 def readCSV(self):
     try:
         return DFTrack(
             pd.read_csv(self.directory_or_file,
                         sep=',',
                         header=0,
                         index_col=0))
     except FileNotFoundError as e:
         raise TrackException('CSV file not found', e)
示例#6
0
    def sort(self, column_name):
        """
        Sorts the data frame by the specified column.

        :param column_name: Column name to sort
        :type column_name: string_or_list
        :return: DFTrack sorted
        :rtype: DFTrack
        """
        if isinstance(column_name, list):
            for column in column_name:
                if column not in self.df:
                    raise TrackException('Column name not found',
                                         "'%s'" % column)
        else:
            if column_name not in self.df:
                raise TrackException('Column name not found',
                                     "'%s'" % column_name)

        return self.__class__(self.df.sort_values(column_name), list(self.df))
示例#7
0
	def makeMap(self, linewidth=2.5, output_file='map'):
		for axarr in self.axarr:
			axarr.lines = []

		if self.map:
			raise TrackException('Map background found in the figure', 'Remove it to create an interactive HTML map.')

		if 'Color' in self.track_df.df:
			for point, next_point in self.computePoints(linewidth=linewidth):
				pass
		else:
			self.computeTracks(linewidth=linewidth)

		mplleaflet.save_html(fig=self.fig, tiles='esri_aerial',	 fileobj=output_file + '.html')#, close_mpl=False) # Creating html map
示例#8
0
    def export(self, filename='exported_file', export_format='csv'):
        """
		Export a data frame of DFTrack to JSON or CSV.

		Parameters
		----------
		export_format: string
			Format to export: JSON or CSV
		filename: string
			Name of the exported file
		"""
        if export_format.lower() == 'json':
            self.df.reset_index().to_json(orient='records',
                                          path_or_buf=filename + '.json')
        elif export_format.lower() == 'csv':
            self.df.to_csv(path_or_buf=filename + '.csv')
        else:
            raise TrackException('Must specify a valid format to export',
                                 "'%s'" % export_format)
示例#9
0
    def getTracksByDate(self, start=None, end=None, periods=None, freq='D'):
        """
		Gets the points of the specified date range 
		using various combinations of parameters.

		2 of 'start', 'end', or 'periods' must be specified.

		Date format recommended: 'yyyy-mm-dd'

		Parameters
		----------
		start: date
			Date start period
		end: date
			Date end period
		periods: int
			Number of periods. If None, must specify 'start' and 'end'
		freq: string
			Frequency of the date range

		Returns
		-------
		df_date: DFTrack
			A DFTrack with the points of the specified date range.
		"""
        if trk_utils.isTimeFormat(start) or trk_utils.isTimeFormat(end):
            raise TrackException('Must specify an appropiate date format',
                                 'Time format found')

        rng = pd.date_range(start=start, end=end, periods=periods, freq=freq)

        df_date = self.df.copy()
        df_date['Date'] = pd.to_datetime(df_date['Date'])
        df_date['ShortDate'] = df_date['Date'].apply(
            lambda date: date.date().strftime('%Y-%m-%d'))
        df_date = df_date[df_date['ShortDate'].apply(lambda date: date in rng)]
        del df_date['ShortDate']

        df_date = df_date.reset_index(drop=True)

        return self.__class__(df_date, list(df_date))
示例#10
0
    def getTracksByTime(self,
                        start,
                        end,
                        include_start=True,
                        include_end=True):
        """
		Gets the points between the specified time range.

		Parameters
		----------
		start: datetime.time
			Time start period
		end: datetime.time
			Time end period
		include_start: boolean
		include_end: boolean
			
		Returns
		-------
		df_time: DFTrack
			A DFTrack with the points of the specified date and time periods.
		"""
        if not trk_utils.isTimeFormat(start) or not trk_utils.isTimeFormat(
                end):
            raise TrackException('Must specify an appropiate time format',
                                 trk_utils.TIME_FORMATS)

        df_time = self.df.copy()

        index = pd.DatetimeIndex(df_time['Date'])
        df_time = df_time.iloc[index.indexer_between_time(
            start_time=start,
            end_time=end,
            include_start=include_start,
            include_end=include_end)]

        df_time = df_time.reset_index(drop=True)

        return self.__class__(df_time, list(df_time))