示例#1
0
    def link(self, f, search_range, *args, **kwargs):
        if 'pos_columns' in kwargs:
            raise nose.SkipTest(
                'Skipping find_link tests with custom pos_columns.')
        # the minimal spacing between features in f is assumed to be 1.

        # from scipy.spatial import cKDTree
        # mindist = 1e7
        # for _, _f in f.groupby('frame'):
        #     dists, _ = cKDTree(_f[['y', 'x']].values).query(_f[['y', 'x']].values, k=2)
        #     mindist = min(mindist, dists[:, 1].min())
        # print("Minimal dist is {0:.3f}".format(mindist))

        kwargs = dict(self.linker_opts, **kwargs)
        size = 3
        separation = kwargs['separation']
        f = f.copy()
        f[['y', 'x']] *= separation
        topleft = (f[['y', 'x']].min().values - 4 * separation).astype(np.int)
        f[['y', 'x']] -= topleft
        shape = (f[['y', 'x']].max().values + 4 * separation).astype(np.int)
        reader = CoordinateReader(f, shape, size)
        if kwargs.get('adaptive_stop', None) is not None:
            kwargs['adaptive_stop'] *= separation
        result = find_link(reader,
                           search_range=search_range * separation,
                           *args,
                           **kwargs)
        result = pandas_sort(result,
                             ['particle', 'frame']).reset_index(drop=True)
        result[['y', 'x']] += topleft
        result[['y', 'x']] /= separation
        return result
示例#2
0
    def link(self, f, search_range, *args, **kwargs):
        if 'pos_columns' in kwargs:
            raise nose.SkipTest('Skipping find_link tests with custom pos_columns.')
        # the minimal spacing between features in f is assumed to be 1.

        # from scipy.spatial import cKDTree
        # mindist = 1e7
        # for _, _f in f.groupby('frame'):
        #     dists, _ = cKDTree(_f[['y', 'x']].values).query(_f[['y', 'x']].values, k=2)
        #     mindist = min(mindist, dists[:, 1].min())
        # print("Minimal dist is {0:.3f}".format(mindist))

        kwargs = dict(self.linker_opts, **kwargs)
        size = 3
        separation = kwargs['separation']
        f = f.copy()
        f[['y', 'x']] *= separation
        topleft = (f[['y', 'x']].min().values - 4 * separation).astype(np.int)
        f[['y', 'x']] -= topleft
        shape = (f[['y', 'x']].max().values + 4 * separation).astype(np.int)
        reader = CoordinateReader(f, shape, size)
        if kwargs.get('adaptive_stop', None) is not None:
            kwargs['adaptive_stop'] *= separation
        result = find_link(reader,
                           search_range=search_range*separation,
                           *args, **kwargs)
        result = pandas_sort(result, ['particle', 'frame']).reset_index(drop=True)
        result[['y', 'x']] += topleft
        result[['y', 'x']] /= separation
        return result
示例#3
0
    def link(self, f, shape, remove=None, **kwargs):
        _kwargs = dict(diameter=self.diameter,
                       search_range=self.search_range,
                       separation=self.separation)
        _kwargs.update(kwargs)
        if remove is not None:
            callback_coords = f.loc[f['frame'] == 1, ['y', 'x']].values
            remove = np.array(remove, dtype=np.int)
            if np.any(remove < 0) or np.any(remove > len(callback_coords)):
                raise RuntimeError('Invalid test: `remove` is out of bounds.')
            callback_coords = np.delete(callback_coords, remove, axis=0)

            def callback(image, coords, **unused_kwargs):
                if image.frame_no == 1:
                    return callback_coords
                else:
                    return coords
        else:
            callback = None
        reader = CoordinateReader(f, shape, self.size)
        return find_link(reader, before_link=callback, **_kwargs)
示例#4
0
 def link(self, f, shape, remove=None, **kwargs):
     _kwargs = dict(diameter=self.diameter,
                    search_range=self.search_range,
                    separation=self.separation,
                    preprocess=False)
     _kwargs.update(kwargs)
     if remove is not None:
         callback_coords = f.loc[f['frame'] == 1, ['y', 'x']].values
         remove = np.array(remove, dtype=np.int)
         if np.any(remove < 0) or np.any(remove > len(callback_coords)):
             raise RuntimeError('Invalid test: `remove` is out of bounds.')
         callback_coords = np.delete(callback_coords, remove, axis=0)
         def callback(image, coords, **unused_kwargs):
             if image.frame_no == 1:
                 return callback_coords
             else:
                 return coords
     else:
         callback = None
     reader = CoordinateReader(f, shape, self.size)
     return find_link(reader, before_link=callback, **_kwargs)