示例#1
0
    H, W = 100, 100

    pixscale = 0.262
    ra, dec = 40., 10.
    psf_sigma = 1.4  # pixels
    v = psf_sigma**2

    ps = pixscale / 3600.
    wcs = Tan(ra, dec, W / 2. + 0.5, H / 2. + 0.5, -ps, 0., 0., ps, float(W),
              float(H))

    tim = tractor.Image(data=np.zeros((H, W), np.float32),
                        inverr=np.ones((H, W), np.float32),
                        psf=tractor.GaussianMixturePSF(1., 0., 0., v, v, 0.),
                        wcs=tractor.ConstantFitsWcs(wcs))
    src = RexGalaxy(tractor.RaDecPos(ra, dec), tractor.Flux(100.),
                    LogRadius(0.))

    tr = tractor.Tractor([tim], [src])
    mod = tr.getModelImage(0)

    plt.clf()
    plt.imshow(mod, interpolation='nearest', origin='lower')
    plt.savefig('rex.png')

    # add noise with std 1.
    noisy = mod + np.random.normal(size=mod.shape)
    # make that the tim's data
    tim.data = noisy

    # reset the source params
示例#2
0
def main():

    # In LSST meas-deblend (on lsst6):
    # python examples/suprimePlot.py --data ~dstn/lsst/ACT-data -v 126969 -c 5 --data-range -100 300 --roi 0 500 0 500 --psf psf.fits --image img.fits --sources srcs.fits

    from optparse import OptionParser
    import sys

    parser = OptionParser(usage=('%prog <img> <psf> <srcs>'))
    parser.add_option('-v',
                      '--verbose',
                      dest='verbose',
                      action='count',
                      default=0,
                      help='Make more verbose')
    opt, args = parser.parse_args()

    if len(args) != 3:
        parser.print_help()
        sys.exit(-1)

    if opt.verbose == 0:
        lvl = logging.INFO
    else:
        lvl = logging.DEBUG
    logging.basicConfig(level=lvl, format='%(message)s', stream=sys.stdout)

    imgfn, psffn, srcfn = args

    pimg = pyfits.open(imgfn)
    if len(pimg) != 4:
        print('Image must have 3 extensions')
        sys.exit(-1)
    img = pimg[1].data
    mask = pimg[2].data
    maskhdr = pimg[2].header
    var = pimg[3].data
    del pimg

    print('var', var.shape)
    #print var
    print('mask', mask.shape)
    #print mask
    print('img', img.shape)
    #print img

    mask = mask.astype(np.int16)
    for bit in range(16):
        on = ((mask & (1 << bit)) != 0)
        print('Bit', bit, 'has', np.sum(on), 'pixels set')
    '''
	MP_BAD  =                    0
	Bit 0 has 2500 pixels set
	MP_SAT  =                    1
	Bit 1 has 5771 pixels set
	MP_INTRP=                    2
	Bit 2 has 11269 pixels set
	MP_CR   =                    3
	Bit 3 has 136 pixels set
	MP_EDGE =                    4
	Bit 4 has 11856 pixels set
	HIERARCH MP_DETECTED =       5
	Bit 5 has 37032 pixels set
	'''

    print('Mask header:', maskhdr)
    maskplanes = {}
    print('Mask planes:')
    for card in maskhdr.ascardlist():
        if not card.key.startswith('MP_'):
            continue
        print(card.value, card.key)
        maskplanes[card.key[3:]] = card.value

    print('Variance range:', var.min(), var.max())

    print('Image median:', np.median(img.ravel()))

    invvar = 1. / var
    invvar[var == 0] = 0.
    invvar[var < 0] = 0.

    sig = np.sqrt(np.median(var))
    H, W = img.shape
    for k, v in maskplanes.items():
        plt.clf()

        I = ((mask & (1 << v)) != 0)
        rgb = np.zeros((H, W, 3))
        clipimg = np.clip((img - (-3. * sig)) / (13. * sig), 0, 1)
        cimg = clipimg.copy()
        cimg[I] = 1
        rgb[:, :, 0] = cimg
        cimg = clipimg.copy()
        cimg[I] = 0
        rgb[:, :, 1] = cimg
        rgb[:, :, 2] = cimg
        plt.imshow(rgb, interpolation='nearest', origin='lower')
        plt.title(k)
        plt.savefig('mask-%s.png' % k.lower())

    badmask = sum([(1 << maskplanes[k])
                   for k in ['BAD', 'SAT', 'INTRP', 'CR']])
    # HACK -- left EDGE sucks
    badmask += (1 << maskplanes['EDGE'])
    #badmask = (1 << 0) | (1 << 1) | (1 << 2) | (1 << 3)
    #badmask |= (1 << 4)
    print('Masking out: 0x%x' % badmask)
    invvar[(mask & badmask) != 0] = 0.

    assert (all(np.isfinite(img.ravel())))
    assert (all(np.isfinite(invvar.ravel())))

    psf = pyfits.open(psffn)[0].data
    print('psf', psf.shape)
    psf /= psf.sum()

    from tractor.emfit import em_fit_2d
    from tractor.fitpsf import em_init_params

    # Create Gaussian mixture model PSF approximation.
    S = psf.shape[0]
    # number of Gaussian components
    K = 3
    w, mu, sig = em_init_params(K, None, None, None)
    II = psf.copy()
    II /= II.sum()
    # HIDEOUS HACK
    II = np.maximum(II, 0)
    print('Multi-Gaussian PSF fit...')
    xm, ym = -(S / 2), -(S / 2)
    em_fit_2d(II, xm, ym, w, mu, sig)
    print('w,mu,sig', w, mu, sig)
    mypsf = tractor.GaussianMixturePSF(w, mu, sig)

    P = mypsf.getPointSourcePatch(S / 2, S / 2)
    mn, mx = psf.min(), psf.max()
    ima = dict(interpolation='nearest', origin='lower', vmin=mn, vmax=mx)
    plt.clf()
    plt.subplot(1, 2, 1)
    plt.imshow(psf, **ima)
    plt.subplot(1, 2, 2)
    pimg = np.zeros_like(psf)
    P.addTo(pimg)
    plt.imshow(pimg, **ima)
    plt.savefig('psf.png')

    sig = np.sqrt(np.median(var))

    plt.clf()
    plt.hist(img.ravel(), 100, range=(-3. * sig, 3. * sig))
    plt.savefig('imghist.png')

    srcs = fits_table(srcfn)
    print('Initial:', len(srcs), 'sources')
    # Trim sources with x=0 or y=0
    srcs = srcs[(srcs.x != 0) * (srcs.y != 0)]
    print('Trim on x,y:', len(srcs), 'sources left')
    # Zero out nans & infs
    for c in ['theta', 'a', 'b']:
        I = np.logical_not(np.isfinite(srcs.get(c)))
        srcs.get(c)[I] = 0.
    # Set sources with flux=NaN to something more sensible...
    I = np.logical_not(np.isfinite(srcs.flux))
    srcs.flux[I] = 1.
    # Sort sources by flux.
    srcs = srcs[np.argsort(-srcs.flux)]

    # Trim sources that are way outside the image.
    margin = 8. * np.maximum(srcs.a, srcs.b)
    H, W = img.shape
    srcs = srcs[(srcs.x > -margin) * (srcs.y > -margin) *
                (srcs.x < (W + margin) * (srcs.y < (H + margin)))]
    print('Trim out-of-bounds:', len(srcs), 'sources left')

    wcs = tractor.FitsWcs(Sip(imgfn, 1))
    #wcs = tractor.NullWCS()

    timg = tractor.Image(data=img,
                         invvar=invvar,
                         psf=mypsf,
                         wcs=wcs,
                         sky=tractor.ConstantSky(0.),
                         photocal=tractor.NullPhotoCal(),
                         name='image')

    inverr = timg.getInvError()
    assert (all(np.isfinite(inverr.ravel())))

    tsrcs = []
    for s in srcs:
        #pos = tractor.PixPos(s.x, s.y)
        pos = tractor.RaDecPos(s.ra, s.dec)
        if s.a > 0 and s.b > 0:
            eflux = tractor.Flux(s.flux / 2.)
            dflux = tractor.Flux(s.flux / 2.)
            re, ab, phi = s.a, s.b / s.a, 90. - s.theta
            eshape = gal.GalaxyShape(re, ab, phi)
            dshape = gal.GalaxyShape(re, ab, phi)
            print('Fluxes', eflux, dflux)
            tsrc = gal.CompositeGalaxy(pos, eflux, eshape, dflux, dshape)
        else:
            flux = tractor.Flux(s.flux)
            print('Flux', flux)
            tsrc = tractor.PointSource(pos, flux)
        tsrcs.append(tsrc)

    chug = tractor.Tractor([timg])
    for src in tsrcs:
        if chug.getModelPatch(timg, src) is None:
            print('Dropping non-overlapping source:', src)
            continue
        chug.addSource(src)
    print('Kept a total of', len(chug.catalog), 'sources')

    ima = dict(interpolation='nearest',
               origin='lower',
               vmin=-3. * sig,
               vmax=10. * sig)
    chia = dict(interpolation='nearest', origin='lower', vmin=-5., vmax=5.)

    plt.clf()
    plt.imshow(img, **ima)
    plt.colorbar()
    plt.savefig('img.png')

    plt.clf()
    plt.imshow(invvar, interpolation='nearest', origin='lower')
    plt.colorbar()
    plt.savefig('invvar.png')

    mod = chug.getModelImages()[0]
    plt.clf()
    plt.imshow(mod, **ima)
    plt.colorbar()
    plt.savefig('mod-0.png')

    chi = chug.getChiImage(0)
    plt.clf()
    plt.imshow(chi, **chia)
    plt.colorbar()
    plt.savefig('chi-0.png')

    for step in range(5):
        cat = chug.getCatalog()
        for src in cat:
            if chug.getModelPatch(timg, src) is None:
                print('Dropping non-overlapping source:', src)
                chug.removeSource(src)
        print('Kept a total of', len(chug.catalog), 'sources')

        #cat = chug.getCatalog()
        #for i,src in enumerate([]):
        #for i,src in enumerate(chug.getCatalog()):
        #for i in range(len(cat)):
        i = 0
        while i < len(cat):
            src = cat[i]

            #print 'Step', i
            #for j,s in enumerate(cat):
            #	x,y = timg.getWcs().positionToPixel(s, s.getPosition())
            #	print '  ',
            #	if j == i:
            #		print '*',
            #	print '(%6.1f, %6.1f)'%(x,y), s

            print('Optimizing source', i, 'of', len(cat))

            x, y = timg.getWcs().positionToPixel(src.getPosition(), src)
            print('(%6.1f, %6.1f)' % (x, y), src)
            # pre = src.getModelPatch(timg)

            s1 = str(src)
            print('src1 ', s1)
            dlnp1, X, a = chug.optimizeCatalogFluxes(srcs=[src])
            s2 = str(src)
            dlnp2, X, a = chug.optimizeCatalogAtFixedComplexityStep(srcs=[src],
                                                                    sky=False)
            s3 = str(src)

            #post = src.getModelPatch(timg)

            print('src1 ', s1)
            print('src2 ', s2)
            print('src3 ', s3)
            print('dlnp', dlnp1, dlnp2)

            if chug.getModelPatch(timg, src) is None:
                print('After optimizing, no overlap!')
                print('Removing source', src)
                chug.removeSource(src)
                i -= 1
            i += 1

            # plt.clf()
            # plt.subplot(2,2,1)
            # img = timg.getImage()
            # (x0,x1,y0,y1) = pre.getExtent()
            # plt.imshow(img, **ima)
            # ax = plt.axis()
            # plt.plot([x0,x0,x1,x1,x0], [y0,y1,y1,y0,y0], 'k-', lw=2)
            # plt.axis(ax)
            # plt.subplot(2,2,3)
            # plt.imshow(pre.getImage(), **ima)
            # plt.subplot(2,2,4)
            # plt.imshow(post.getImage(), **ima)
            # plt.savefig('prepost-s%i-s%03i.png' % (step, i))
            #
            # mod = chug.getModelImages()[0]
            # plt.clf()
            # plt.imshow(mod, **ima)
            # plt.colorbar()
            # plt.savefig('mod-s%i-s%03i.png' % (step, i))
            # chi = chug.getChiImage(0)
            # plt.clf()
            # plt.imshow(chi, **chia)
            # plt.colorbar()
            # plt.savefig('chi-s%i-s%03i.png' % (step, i))

        #dlnp,x,a = chug.optimizeCatalogFluxes()
        #print 'fluxes: dlnp', dlnp
        #dlnp,x,a = chug.optimizeCatalogAtFixedComplexityStep()
        #print 'opt: dlnp', dlnp

        mod = chug.getModelImages()[0]
        plt.clf()
        plt.imshow(mod, **ima)
        plt.colorbar()
        plt.savefig('mod-%i.png' % (step + 1))

        chi = chug.getChiImage(0)
        plt.clf()
        plt.imshow(chi, **chia)
        plt.colorbar()
        plt.savefig('chi-%i.png' % (step + 1))

    return

    for step in range(5):
        chug.optimizeCatalogFluxes()
        mod = chug.getModelImages()[0]
        plt.clf()
        plt.imshow(mod, **ima)
        plt.colorbar()
        plt.savefig('mod-s%i.png' % step)

        chi = chug.getChiImage(0)
        plt.clf()
        plt.imshow(chi, **chia)
        plt.colorbar()
        plt.savefig('chi-s%i.png' % step)
示例#3
0
def read_cfht_coadd(imgfn, weightfn, roi=None, radecroi=None, filtermap=None):
    '''
    Given filenames for CFHT coadd image and weight files, produce
    a tractor.Image object.

    *roi*: (x0,x1, y0,y1): a region-of-interest in pixel space;
           returns the subimage [x0,x1), [y0,y1).
    *radecroi*: (ra0, ra1, dec0, dec1): a region-of-interest in RA,Dec space;
           returns the subimage bounding the given RA,Dec box [ra0,ra1], [dec0,dec1].
    *filtermap*: dict, eg,  { 'i.MP9701': 'i' }, to map from the FILTER header keyword to
           a standard filter name.
    '''

    P = pyfits.open(imgfn)
    print 'Read', P[0].data.shape, 'image'
    img = P[0].data
    imgheader = P[0].header

    # WCS: the image file has a WCS header
    # we should be able to do:
    #twcs = tractor.FitsWcs(imgfn)
    # ARGH!  Memory issues reading the file; HACK: copy header...
    f, tempfn = tempfile.mkstemp()
    os.close(f)
    pyfits.writeto(tempfn, None, header=imgheader, clobber=True)
    twcs = tractor.FitsWcs(tempfn)

    # Cut down to the region-of-interest, if given.
    if roi is not None:
        x0, x1, y0, y1 = roi
    elif radecroi is not None:
        ralo, rahi, declo, dechi = radecroi
        xy = [
            twcs.positionToPixel(tractor.RaDecPos(r, d))
            for r, d in [(ralo, declo), (ralo, dechi), (rahi,
                                                        declo), (rahi, dechi)]
        ]
        xy = np.array(xy)
        x0, x1 = xy[:, 0].min(), xy[:, 0].max()
        y0, y1 = xy[:, 1].min(), xy[:, 1].max()
        print 'RA,Dec ROI', ralo, rahi, declo, dechi, 'becomes x,y ROI', x0, x1, y0, y1

        # Clip to image size...
        H, W = data.shape
        x0 = max(0, min(x0, W - 1))
        x1 = max(0, min(x1, W))
        y0 = max(0, min(y0, H - 1))
        y1 = max(0, min(y1, H))
        print ' clipped to', x0, x1, y0, y1

    else:
        H, W = img.shape
        x0, x1, y0, y1 = 0, W, 0, H

    if roi is not None or radecroi is not None:
        # Actually cut the pixels
        img = img[y0:y1, x0:x1].copy()
        # Also tell the WCS to apply an offset.
        twcs.setX0Y0(x0, y0)

    print 'Image:', img.shape

    # HACK, tell the WCS how big the image is...
    # (needed because of the previous HACK, copying the header)
    twcs.wcs.set_imagesize(x1 - x0, y1 - y0)
    print twcs

    # Argh, this doesn't work: the files are .fz compressed
    #P = pyfits.open(weightfn)
    #weight = P[1].data[y0:y1, x0:x1]
    # HACK: use "imcopy" to uncompress to a temp file!
    #print 'Writing to temp file', tempfn
    cmd = "imcopy '%s[%i:%i,%i:%i]' '!%s'" % (weightfn, x0 + 1, x1, y0 + 1, y1,
                                              tempfn)
    print 'running', cmd
    os.system(cmd)
    P = pyfits.open(tempfn)
    weight = P[0].data
    print 'Read', weight.shape, 'weight image'

    # PSF model: FAKE IT for now
    tpsf = tractor.GaussianMixturePSF(np.array([0.9, 0.1]), np.zeros((2, 2)),
                                      np.array([1, 2]))

    # SKY level: assume zero
    #sky = np.median(img)
    #print 'Image median value:', sky
    sky = 0.
    tsky = tractor.ConstantSky(sky)

    # Photometric calibration: the FITS header says:
    '''
    FILTER  = 'r.MP9601'           / Filter
    PHOTZP  =               30.000 / photometric zeropoint
    COMMENT AB magnitude = -2.5 * log10(flux) + PHOTZP
    COMMENT r.MP9601=r_SDSS-0.024*(g_SDSS-r_SDSS)
    '''
    # Grab the filter name, and apply the filtermap (if given)
    filter = imgheader['FILTER']
    if filtermap:
        filter = filtermap.get(filter, filter)
    zp = imgheader['PHOTZP']
    # Simple photocal object
    photocal = tractor.MagsPhotoCal(filter, zp)

    # For plotting: find the approximate standard deviation
    #print 'Median weight:', np.median(weight)
    sigma1 = 1. / np.sqrt(np.median(weight))
    zr = np.array([-3, 10]) * sigma1 + sky

    name = 'CFHT ' + imgheader.get('OBJECT', '')

    tim = tractor.Image(data=img,
                        invvar=weight,
                        psf=tpsf,
                        wcs=twcs,
                        sky=tsky,
                        photocal=photocal,
                        name=name,
                        zr=zr)
    tim.extent = [x0, x1, y0, y1]
    return tim
示例#4
0
        FWHM = 1.0  # arcsec
        # Need it in pixels:
        FWHM = FWHM / (3600.0 * hdr['CDELT1'])
        print "PS1_IQ: WARNING: FWHM = NaN in header, setting to 1.0 arcsec =", FWHM, "pixels"

    return FWHM


# ============================================================================

if __name__ == '__main__':

    if False:
        # Testing LensPlaneWCS:

        ra, dec = 310.0, 0.0
        pos = tractor.RaDecPos(ra, dec)

        lenswcs = lenstractor.LensPlaneWCS(pos)

        print lenswcs

        dt = 1 / 360.0
        print lenswcs.positionToPixel(tractor.RaDecPos(ra, dec))
        print lenswcs.positionToPixel(tractor.RaDecPos(ra + dt, dec))
        print lenswcs.positionToPixel(tractor.RaDecPos(ra - dt, dec))
        print lenswcs.positionToPixel(tractor.RaDecPos(ra, dec + dt))
        print lenswcs.positionToPixel(tractor.RaDecPos(ra, dec - dt))

# ============================================================================
示例#5
0
    psf = tractor.psf.PixelizedPSF(psf.array)

    # sky_level_pixel = sky_level * pixel_scale**2
    sky_level_pixel = float(sky_levels_pixel[0])  # [counts / pixel]

    gmag = 23.0
    ##  gflux         = exptime * 10.**((zpt - gmag) / 2.5)               # [Total counts on the image].
    gflux = 10**(-0.4 * (gmag - 22.5))  # [Nanomaggies].

    gre = 0.40  # [arcsec].

    ##  https://github.com/dstndstn/tractor/blob/13d3239500c5af873935c81d079c928f4cdf0b1d/doc/galsim.rst
    ##  _gflux        = tractor.Fluxes(g=gflux, r=0.0, z=0.0)
    _gflux = tractor.NanoMaggies(**{'g': gflux, 'r': 0.0, 'z': 0.0})

    src = RexGalaxy(tractor.RaDecPos(ra, dec), _gflux, LogRadius(gre))

    wcs = Tan(ra, dec, W / 2. + 0.5, H / 2. + 0.5, -ps, 0., 0., ps, float(W),
              float(H))
    wcs = tractor.ConstantFitsWcs(wcs)

    tims = []

    for band in ['g', 'r', 'z']:
        ##  photcal    = tractor.LinearPhotoCal(1., band=band)
        photcal = tractor.MagsPhotoCal(band, zpt)

        csky_level_sig = photcal.brightnessToCounts(sky_level_sig)

        ##  The rms of the noise in ADU.
        ##  noise      = galsim.PoissonNoise(rng, sky_level=sky_level_pixel)
示例#6
0
def read_wise_level1b(basefn, radecroi=None, radecrad=None, filtermap=None,
                      nanomaggies=False, mask_gz=False, unc_gz=False,
                      sipwcs=False, constantInvvar=False,
                      roi=None,
                      zrsigs=[-3, 10],
                      ):
    if filtermap is None:
        filtermap = {}

    intfn = basefn + '-int-1b.fits'
    maskfn = basefn + '-msk-1b.fits'

    if mask_gz:
        maskfn = maskfn + '.gz'
    uncfn = basefn + '-unc-1b.fits'
    if unc_gz:
        uncfn = uncfn + '.gz'

    logger.debug('intensity image   %s' % intfn)
    logger.debug('mask image        %s' % maskfn)
    logger.debug('uncertainty image %s' % uncfn)

    if sipwcs:
        wcs = Sip(intfn, 0)
        twcs = tractor.ConstantFitsWcs(wcs)
    else:
        twcs = tractor.ConstantFitsWcs(intfn)

    # Read enough of the image to get its size
    Fint = fitsio.FITS(intfn)
    H, W = Fint[0].get_info()['dims']

    if radecrad is not None:
        r, d, rad = radecrad
        x, y = twcs.positionToPixel(tractor.RaDecPos(r, d))
        pixrad = rad / (twcs.pixel_scale() / 3600.)
        print('Tractor WCS:', twcs)
        print('RA,Dec,rad', r, d, rad, 'becomes x,y,pixrad', x, y, pixrad)
        roi = (x - pixrad, x + pixrad + 1, y - pixrad, y + pixrad + 1)

    if radecroi is not None:
        ralo, rahi, declo, dechi = radecroi
        xy = [twcs.positionToPixel(tractor.RaDecPos(r, d))
              for r, d in [(ralo, declo), (ralo, dechi), (rahi, declo), (rahi, dechi)]]
        xy = np.array(xy)
        x0, x1 = xy[:, 0].min(), xy[:, 0].max()
        y0, y1 = xy[:, 1].min(), xy[:, 1].max()
        print('RA,Dec ROI', ralo, rahi, declo, dechi,
              'becomes x,y ROI', x0, x1, y0, y1)
        roi = (x0, x1 + 1, y0, y1 + 1)

    if roi is not None:
        x0, x1, y0, y1 = roi
        x0 = int(np.floor(x0))
        x1 = int(np.ceil(x1))
        y0 = int(np.floor(y0))
        y1 = int(np.ceil(y1))
        roi = (x0, x1, y0, y1)
        # Clip to image size...
        x0 = np.clip(x0, 0, W)
        x1 = np.clip(x1, 0, W)
        y0 = np.clip(y0, 0, H)
        y1 = np.clip(y1, 0, H)
        if x0 == x1 or y0 == y1:
            print('ROI is empty')
            return None
        assert(x0 < x1)
        assert(y0 < y1)
        #roi = (x0,x1,y0,y1)
        twcs.setX0Y0(x0, y0)

    else:
        x0, x1, y0, y1 = 0, W, 0, H
        roi = (x0, x1, y0, y1)

    ihdr = Fint[0].read_header()
    data = Fint[0][y0:y1, x0:x1]
    logger.debug('Read %s intensity' % (str(data.shape)))
    band = ihdr['BAND']

    F = fitsio.FITS(uncfn)
    assert(F[0].get_info()['dims'] == [H, W])
    unc = F[0][y0:y1, x0:x1]

    F = fitsio.FITS(maskfn)
    assert(F[0].get_info()['dims'] == [H, W])
    mask = F[0][y0:y1, x0:x1]

    # HACK -- circular Gaussian PSF of fixed size...
    # in arcsec
    fwhms = {1: 6.1, 2: 6.4, 3: 6.5, 4: 12.0}
    # -> sigma in pixels
    sig = fwhms[band] / 2.35 / twcs.pixel_scale()
    # print 'PSF sigma', sig, 'pixels'
    tpsf = tractor.NCircularGaussianPSF([sig], [1.])

    filter = 'w%i' % band
    if filtermap:
        filter = filtermap.get(filter, filter)
    zp = ihdr['MAGZP']
    if nanomaggies:
        photocal = tractor.LinearPhotoCal(tractor.NanoMaggies.zeropointToScale(zp),
                                          band=filter)
    else:
        photocal = tractor.MagsPhotoCal(filter, zp)

    # print 'Image median:', np.median(data)
    # print 'unc median:', np.median(unc)

    sky = np.median(data)
    tsky = tractor.ConstantSky(sky)

    name = 'WISE ' + ihdr['FRSETID'] + ' W%i' % band

    # Mask bits, from
    # http://wise2.ipac.caltech.edu/docs/release/allsky/expsup/sec4_4a.html#maskdef
    # 0 from static mask: excessively noisy due to high dark current alone
    # 1 from static mask: generally noisy [includes bit 0]
    # 2 from static mask: dead or very low responsivity
    # 3 from static mask: low responsivity or low dark current
    # 4 from static mask: high responsivity or high dark current
    # 5 from static mask: saturated anywhere in ramp
    # 6 from static mask: high, uncertain, or unreliable non-linearity
    # 7 from static mask: known broken hardware pixel or excessively noisy responsivity estimate [may include bit 1]
    # 8 reserved
    # 9 broken pixel or negative slope fit value (downlink value = 32767)
    # 10 saturated in sample read 1 (down-link value = 32753)
    # 11 saturated in sample read 2 (down-link value = 32754)
    # 12 saturated in sample read 3 (down-link value = 32755)
    # 13 saturated in sample read 4 (down-link value = 32756)
    # 14 saturated in sample read 5 (down-link value = 32757)
    # 15 saturated in sample read 6 (down-link value = 32758)
    # 16 saturated in sample read 7 (down-link value = 32759)
    # 17 saturated in sample read 8 (down-link value = 32760)
    # 18 saturated in sample read 9 (down-link value = 32761)
    # 19 reserved
    # 20 reserved
    # 21 new/transient bad pixel from dynamic masking
    # 22 reserved
    # 23 reserved
    # 24 reserved
    # 25 reserved
    # 26 non-linearity correction unreliable
    # 27 contains cosmic-ray or outlier that cannot be classified (from temporal outlier rejection in multi-frame pipeline)
    # 28 contains positive or negative spike-outlier
    # 29 reserved
    # 30 reserved
    # 31 not used: sign bit

    goodmask = ((mask & sum([1 << bit for bit in [0, 1, 2, 3, 4, 5, 6, 7, 9,
                                                  10, 11, 12, 13, 14, 15, 16, 17, 18,
                                                  21, 26, 27, 28]])) == 0)
    sigma1 = np.median(unc[goodmask])
    zr = np.array(zrsigs) * sigma1 + sky

    # constant
    cinvvar = np.zeros_like(data)
    cinvvar[goodmask] = 1. / (sigma1**2)
    # varying
    vinvvar = np.zeros_like(data)
    vinvvar[goodmask] = 1. / (unc[goodmask])**2

    bad = np.flatnonzero(np.logical_not(np.isfinite(vinvvar)))
    if len(bad):
        vinvvar.flat[bad] = 0.
        cinvvar.flat[bad] = 0.
        data.flat[bad] = sky

    if constantInvvar:
        invvar = cinvvar
    else:
        invvar = vinvvar

    # avoid NaNs
    data[np.logical_not(goodmask)] = sky

    mjd = ihdr['MJD_OBS']
    time = TAITime(None, mjd=mjd)

    tim = tractor.Image(data=data, invvar=invvar, psf=tpsf, wcs=twcs,
                        sky=tsky, photocal=photocal, time=time, name=name, zr=zr,
                        domask=False)
    tim.extent = [x0, x1, y0, y1]
    tim.sigma1 = sigma1
    #tim.roi = roi

    # FIXME
    tim.maskplane = mask
    tim.uncplane = unc
    tim.goodmask = goodmask

    # carry both around for retrofitting
    tim.vinvvar = vinvvar
    tim.cinvvar = cinvvar

    return tim
示例#7
0
def read_wise_level3(basefn, radecroi=None, filtermap=None,
                     nanomaggies=False):
    if filtermap is None:
        filtermap = {}
    intfn = basefn + '-int-3.fits'
    uncfn = basefn + '-unc-3.fits'

    print('intensity image', intfn)
    print('uncertainty image', uncfn)

    P = pyfits.open(intfn)
    ihdr = P[0].header
    data = P[0].data
    print('Read', data.shape, 'intensity')
    band = ihdr['BAND']

    P = pyfits.open(uncfn)
    unc = P[0].data
    print('Read', unc.shape, 'uncertainty')

    ''' cov:
    BAND    =                    1 / wavelength band number
    WAVELEN =                3.368 / [microns] effective wavelength of band
    COADDID = '3342p000_ab41'      / atlas-image identifier
    MAGZP   =                 20.5 / [mag] relative photometric zero point
    MEDINT  =      4.0289044380188 / [DN] median of intensity pixels
    '''
    ''' int:
    BUNIT   = 'DN      '           / image pixel units
    CTYPE1  = 'RA---SIN'           / Projection type for axis 1
    CTYPE2  = 'DEC--SIN'           / Projection type for axis 2
    CRPIX1  =          2048.000000 / Axis 1 reference pixel at CRVAL1,CRVAL2
    CRPIX2  =          2048.000000 / Axis 2 reference pixel at CRVAL1,CRVAL2
    CDELT1  =  -0.0003819444391411 / Axis 1 scale at CRPIX1,CRPIX2 (deg/pix)
    CDELT2  =   0.0003819444391411 / Axis 2 scale at CRPIX1,CRPIX2 (deg/pix)
    CROTA2  =             0.000000 / Image twist: +axis2 W of N, J2000.0 (deg)
    '''
    ''' unc:
    FILETYPE= '1-sigma uncertainty image' / product description
    '''

    twcs = tractor.WcslibWcs(intfn)
    print('WCS', twcs)
    # twcs.debug()
    print('pixel scale', twcs.pixel_scale())

    # HACK -- circular Gaussian PSF of fixed size...
    # in arcsec
    fwhms = {1: 6.1, 2: 6.4, 3: 6.5, 4: 12.0}
    # -> sigma in pixels
    sig = fwhms[band] / 2.35 / twcs.pixel_scale()
    print('PSF sigma', sig, 'pixels')
    tpsf = tractor.NCircularGaussianPSF([sig], [1.])

    if radecroi is not None:
        ralo, rahi, declo, dechi = radecroi
        xy = [twcs.positionToPixel(tractor.RaDecPos(r, d))
              for r, d in [(ralo, declo), (ralo, dechi), (rahi, declo), (rahi, dechi)]]
        xy = np.array(xy)
        x0, x1 = xy[:, 0].min(), xy[:, 0].max()
        y0, y1 = xy[:, 1].min(), xy[:, 1].max()
        print('RA,Dec ROI', ralo, rahi, declo, dechi,
              'becomes x,y ROI', x0, x1, y0, y1)

        # Clip to image size...
        H, W = data.shape
        x0 = max(0, min(x0, W - 1))
        x1 = max(0, min(x1, W))
        y0 = max(0, min(y0, H - 1))
        y1 = max(0, min(y1, H))
        print(' clipped to', x0, x1, y0, y1)

        data = data[y0:y1, x0:x1]
        unc = unc[y0:y1, x0:x1]
        twcs.setX0Y0(x0, y0)
        print('Cut data to', data.shape)

    else:
        H, W = data.shape
        x0, x1, y0, y1 = 0, W, 0, H

    filt = 'w%i' % band
    if filtermap:
        filt = filtermap.get(filt, filt)
    zp = ihdr['MAGZP']

    if nanomaggies:
        photocal = tractor.LinearPhotoCal(tractor.NanoMaggies.zeropointToScale(zp),
                                          band=filt)
    else:
        photocal = tractor.MagsPhotoCal(filt, zp)

    print('Image median:', np.median(data))
    print('unc median:', np.median(unc))

    sky = np.median(data)
    tsky = tractor.ConstantSky(sky)

    sigma1 = np.median(unc)
    zr = np.array([-3, 10]) * sigma1 + sky

    name = 'WISE ' + ihdr['COADDID'] + ' W%i' % band

    tim = tractor.Image(data=data, invvar=1. / (unc**2), psf=tpsf, wcs=twcs,
                        sky=tsky, photocal=photocal, name=name, zr=zr,
                        domask=False)
    tim.extent = [x0, x1, y0, y1]
    return tim