def getSalesGrowth(fundamental_data, instrument, fundamental_period):
    # return Ratio dataframe
    import numpy as np
    try:
        if fundamental_period == FundamentalPeriod.yearly:
            ratio = Ratio.fundamental_revenue_Y
        else:
            ratio = Ratio.fundamental_revenue_Q
        sales = fundamental_data.download(instrument, ratio)

        if sales is None or len(sales) == 0:
            logger.error(
                'error downloading %s for %s => return sales growth none' %
                (ratio, instrument.symbol))
            return None

        currentSales = sales[Ratio.ratio]
        salesGrowth = sales.copy()
        salesGrowth[Ratio.ratio] = np.divide(
            currentSales - currentSales.shift(periodsToShift),
            currentSales.shift(periodsToShift)) * 100
    except Exception as e:
        logger.error('Error getting sales growth for %s %s => return None' %
                     (instrument.symbol, str(e)))
        return None
    return salesGrowth
def getTurnDiff(fundamental_data, instrument, fundamental_period, fromDate,
                toDate):
    try:
        if fundamental_period == FundamentalPeriod.yearly:
            ratio_1 = Ratio.fundamental_revenue_Y
            ratio_2 = Ratio.fundamental_assets_Y
            periodsToShift = 1
        else:
            ratio_1 = Ratio.fundamental_revenue_Q
            ratio_2 = Ratio.fundamental_assets_Q
            periodsToShift = 4
        fromDate = fromDate - datetime.timedelta(days=2 * 365)
        sales = fundamental_data.download(instrument,
                                          ratio_1,
                                          fromDate=fromDate)
        assets = fundamental_data.download(instrument,
                                           ratio_2,
                                           fromDate=fromDate)
        turnover = sales / assets
        turnoverDiff = turnover - turnover.shift(periodsToShift)
        return turnoverDiff

    except Exception as e:
        logger.error('Error getting turnoverDiff for %s %s => return None' %
                     (instrument.symbol, str(e)))
        return None
def getLeverage(fundamental_data, instrument, fundamental_period, fromDate,
                toDate):
    try:
        if fundamental_period == FundamentalPeriod.yearly:
            ratio_1 = Ratio.fundamental_debt_Y
            ratio_2 = Ratio.fundamental_assets_Y
            periodsToShift = 1
        else:
            ratio_1 = Ratio.fundamental_debt_Q
            ratio_2 = Ratio.fundamental_assets_Q
            periodsToShift = 4

        debt = fundamental_data.download(instrument,
                                         ratio_1,
                                         fromDate=fromDate)
        assets = fundamental_data.download(instrument,
                                           ratio_2,
                                           fromDate=fromDate)
        leverage = debt / assets

        return leverage

    except Exception as e:
        logger.error('Error getting gross margin for %s %s => return None' %
                     (instrument.symbol, str(e)))
        return None
def getFCFPerShare(fundamental_data, instrument, fundamental_period, fromDate,
                   toDate):
    try:
        if fundamental_period == FundamentalPeriod.yearly:
            ratio_1 = Ratio.fundamental_free_cashflow_Y
            ratio_2 = Ratio.fundamental_shares_Y
            periodsToShift = 1
        else:
            ratio_1 = Ratio.fundamental_free_cashflow_Q
            ratio_2 = Ratio.fundamental_shares_Q
            periodsToShift = 4

        fcff = fundamental_data.download(instrument,
                                         ratio_1,
                                         fromDate=fromDate)
        shares = fundamental_data.download(instrument,
                                           ratio_2,
                                           fromDate=fromDate)
        output = fcff / shares
        return output

    except Exception as e:
        logger.error(
            'Error getting free cashflow per share for %s %s => return None' %
            (instrument, str(e)))
        return None
示例#5
0
    def importExcel(self, file, instrument):
        reader = pd.ExcelFile(file)
        sheetNames = reader.sheet_names
        output = True
        for sheet in sheetNames:
            ratio = self.getRatioFromSheet(sheet)
            logger.debug('%s_%s reading %s' %
                         (instrument.symbol, instrument.currency, ratio))
            dataDownloaded = reader.parse(sheet)

            df_to_save = self.formatFundamental(dataDownloaded)

            # save it to database
            if df_to_save is not None:
                logger.debug('%s_%s saving to database %s' %
                             (instrument.symbol, instrument.currency, ratio))
                try:
                    self.ratioDataService.saveRatioDataFrame(
                        df_to_save, instrument, ratio)
                except Exception as e:
                    logger.error('Error saving Ratio %s of %s_%s :%s' %
                                 (ratio, instrument.symbol,
                                  instrument.currency, str(e)))
                    output = False
            else:
                logger.error('Error getting Ratio %s of %s_%s' %
                             (ratio, instrument.symbol, instrument.currency))
                output = False
        return output
def getCurrentRatio(fundamental_data, instrument, fundamental_period, fromDate,
                    toDate):
    try:
        if fundamental_period == FundamentalPeriod.yearly:
            ratio_1 = Ratio.fundamental_current_assets_Y

        else:
            ratio_1 = Ratio.fundamental_current_assets_Q

        if fundamental_period == FundamentalPeriod.yearly:
            ratio_2 = Ratio.fundamental_current_liabilities_Y
        else:
            ratio_2 = Ratio.fundamental_current_liabilities_Q

        fromDate = fromDate - datetime.timedelta(days=2 * 365)
        currentAssetsassets = fundamental_data.download(instrument,
                                                        ratio_1,
                                                        fromDate=fromDate)
        currentLiabilities = fundamental_data.download(instrument,
                                                       ratio_2,
                                                       fromDate=fromDate)
        currentRatio = currentAssetsassets / currentLiabilities
        return currentRatio

    except Exception as e:
        logger.error('Error getting current Ratio for %s %s => return None' %
                     (instrument.symbol, str(e)))
        return None
def getFCFA(fundamental_data, instrument, fundamental_period, fromDate,
            toDate):
    # Sum(eight - yearFCF) / total    assets(t)
    try:
        if fundamental_period == FundamentalPeriod.yearly:
            ratio_1 = Ratio.fundamental_free_cashflow_Y
            ratio_2 = Ratio.fundamental_assets_Y
            periodsToShift = 1
        else:
            ratio_1 = Ratio.fundamental_free_cashflow_Q
            ratio_2 = Ratio.fundamental_assets_Q
            periodsToShift = 4
        fromDate = fromDate - datetime.timedelta(days=10 * 365)
        fcff = fundamental_data.download(instrument,
                                         ratio_1,
                                         fromDate=fromDate)
        assets = fundamental_data.download(instrument,
                                           ratio_2,
                                           fromDate=fromDate)

        sum_fcff = fcff.rolling(8 * periodsToShift).sum()
        fcfa = sum_fcff / assets

        return fcfa

    except Exception as e:
        logger.error('Error getting fcfa for %s %s => return None' %
                     (instrument.symbol, str(e)))
        return None
示例#8
0
 def saveTickDataFrame(self, dataframe, instrument, period):
     if period == Period.tick:
         dao = TickDao(self.user_settings)
         return dao.save(dataframe, instrument=instrument)
     else:
         logger.error("Trying to save not tick period as tick ")
         return False
def getFCFTADiff(fundamental_data, instrument, fundamental_period, fromDate,
                 toDate):
    try:
        if fundamental_period == FundamentalPeriod.yearly:
            ratio_1 = Ratio.fundamental_free_cashflow_Y
            ratio_2 = Ratio.fundamental_assets_Y
            periodsToShift = 1
        else:
            ratio_1 = Ratio.fundamental_free_cashflow_Q
            ratio_2 = Ratio.fundamental_assets_Q
            periodsToShift = 4
        fromDate = fromDate - datetime.timedelta(days=2 * 365)
        fcff = fundamental_data.download(instrument,
                                         ratio_1,
                                         fromDate=fromDate)
        assets = fundamental_data.download(instrument,
                                           ratio_2,
                                           fromDate=fromDate)
        fcfta = fcff / assets
        fcftaDiff = fcfta - fcfta.shift(periodsToShift)
        return fcftaDiff

    except Exception as e:
        logger.error('Error getting fcftaDiff for %s %s => return None' %
                     (instrument.symbol, str(e)))
        return None
示例#10
0
    def cleanOutliersData(self, instrument, period, df):
        if df is None:
            return None
        # TODO improve to get average of surrounded instead of delete
        output = df.copy()
        if period == Period.tick:
            wrongBid = mad_outlier(df[Tick.bid].values.reshape(-1, 1))

            output = df.loc[~wrongBid]
            wrongAsk = mad_outlier(df[Tick.ask].values.reshape(-1, 1))
            output = df.loc[~wrongAsk]
        else:
            wrongClose = mad_outlier(df[Bar.close].values.reshape(-1, 1))
            output = df.loc[~wrongClose]
            wrongOpen = mad_outlier(df[Bar.open].values.reshape(-1, 1))
            output = df.loc[~wrongOpen]
        if len(output) == 0:
            logger.error("All data was wrong for %s_%s when cleaning" % (instrument.symbol, instrument.currency))
        else:
            errorsFind = len(df) - len(output)
            if errorsFind is not 0:
                logger.debug('Find %i outliers to remove in %s_%s when cleaning' % (errorsFind,
                                                                                    instrument.symbol,
                                                                                    instrument.currency))
        return output
示例#11
0
    def importAllFiles(self):
        filesInInput = self.market_data_provider.filesInDirectory
        for file in filesInInput:
            instrument, fromDate, toDate, period, number_periods = self.market_data_provider.getDataFile_instrument_from_to_period_numberPeriods(
                file)
            dataDB = self.historical_market_data_service.getHistoricalData(
                instrument=instrument,
                number_of_periods=number_periods,
                fromDate=fromDate,
                toDate=toDate,
                period=period)
            if dataDB is not None:
                dataDB = dataDB[fromDate:toDate]
                if dataDB is not None and (not fromDate in dataDB.index
                                           or toDate not in dataDB.index):
                    dataDB = None

            if dataDB is None:
                # if dataDB is None:
                dataframe = self.market_data_provider.download(
                    instrument, period, number_periods, fromDate, toDate)
                if dataframe is not None:
                    isSaved = self.historical_market_data_service.saveBarDataFrame(
                        dataframe, instrument, period, number_periods)
                    if isSaved:
                        self.market_data_provider.markFileAsProcessed(file)
                else:
                    # mark as proccessed if some errroes BID candlesstick for ex
                    logger.error('Cant read %s => mark as procesed' % file)
                    self.market_data_provider.markFileAsProcessed(file)
            else:
                # marked to avoid reading it next time
                self.market_data_provider.markFileAsProcessed(file)
    def __downloadHistoricalPrices__(self, wrongInstrumentsSymbolLists,
                                     outputDict, instrument, fromDate, toDate):
        # self.lock.acquire()
        # outputDict['wrong'] = wrongInstrumentsSymbolLists
        historicalData = self.historicalMarketDataService.getHistoricalData(
            instrument,
            period=Period.day,
            number_of_periods=1,
            fromDate=fromDate,
            toDate=toDate,
            bar_type=BarType.time_bar,
            force_download=self.force_download,
            endOfDayData=True
            # force to download it with index time to zero
        )

        if historicalData is None:
            logger.error(
                '%s_%s has no historical Data to vectorized => removing column'
                % (instrument.symbol, instrument.currency))
            wrongInstrumentsSymbolLists.append(instrument.symbol)
            if 'wrong' in outputDict.keys():
                outputDict['wrong'] += wrongInstrumentsSymbolLists
            else:
                outputDict['wrong'] = wrongInstrumentsSymbolLists
            # self.lock.release()
            return

        self.__formatPrices__(outputDict, instrument, historicalData)
    def formatFundamental(self, input):
        import pandas as pd
        input_df = input.copy().reset_index()

        columnsRatio = list(input_df.columns)
        columnsRatio.remove(self.columns_ratio_dict[Ratio.time])
        if len(columnsRatio) > 1:
            logger.error('Error more 1 column in morningstar: %s' %
                         str(columnsRatio))
            return None
        columnName = columnsRatio[0]

        output = pd.DataFrame(input,
                              columns=Ratio.columns,
                              index=input_df.index)

        for column in output.columns:
            if column == Ratio.time:
                timeProcessed = self.formatTime(
                    input_df[self.columns_ratio_dict[column]])
                output[column] = timeProcessed
            else:
                output[column] = input_df[columnName]

        output.set_index(Ratio.index, inplace=True)

        return output
def getAssetQualityIndex(fundamental_data, instrument, fundamental_period,
                         fromDate, toDate):
    try:
        if fundamental_period == FundamentalPeriod.yearly:
            ratio_1 = Ratio.fundamental_non_current_assets_Y
            ratio_2 = Ratio.fundamental_assets_Y
            periodsToShift = 1
        else:
            ratio_1 = Ratio.fundamental_non_current_assets_Q
            ratio_2 = Ratio.fundamental_assets_Q
            periodsToShift = 4

        fromDate = fromDate - datetime.timedelta(days=2 * 365)
        non_current_assets = fundamental_data.download(instrument,
                                                       ratio_1,
                                                       fromDate=fromDate)
        assets = fundamental_data.download(instrument,
                                           ratio_2,
                                           fromDate=fromDate)
        aqi_t = non_current_assets / assets  # measure attempts cost deferral as intangible assets

        aqi_t_1 = non_current_assets.shift(periodsToShift) / assets.shift(
            periodsToShift)
        return aqi_t / aqi_t_1

    except Exception as e:
        logger.error('Error getting gross margin for %s %s => return None' %
                     (instrument.symbol, str(e)))
        return None
    def __downloadAllRatiosBatch__(self, outputDict, instrument, fromDate,
                                   toDate, ratioList,
                                   wrongInstrumentsSymbolLists):
        import datetime
        ratio = ratioList[0]
        if ratio.endswith('Y'):
            fromDateRatio = fromDate - datetime.timedelta(days=2 * 365)
        else:
            fromDateRatio = fromDate - datetime.timedelta(days=1 * 365)

        ratioDataBatch = self.ratioDataService.getRatioDataBatch(
            instrument,
            ratioList,
            fromDateRatio,
            toDate,
            force_download=self.force_download)

        if ratioDataBatch is None:
            logger.error(
                '%s_%s has no ratios %s Data to vectorized =>  removing column'
                % (instrument.symbol, instrument.currency, ratioList))
            wrongInstrumentsSymbolLists.append(instrument.symbol)
        if (DataDictKeys.close in outputDict.keys()):
            indexSelected = outputDict[DataDictKeys.close].index
            nanDF = self.__createDataframe__([instrument], index=indexSelected)
        else:
            nanDF = self.__createDataframe__([instrument],
                                             fromDate=fromDate,
                                             toDate=toDate)

        for ratio in ratioList:
            if ratio not in outputDict.keys():
                outputDict[ratio] = nanDF.copy()
                if ratioDataBatch is not None:
                    ratioIndexBar = nanDF.copy().index.searchsorted(
                        ratioDataBatch.index)
            else:
                if ratioDataBatch is not None:
                    ratioIndexBar = outputDict[ratio].index.searchsorted(
                        ratioDataBatch.index)

            if ratioDataBatch is not None:
                ratioIndexBar[ratioIndexBar > 0] = ratioIndexBar[
                    ratioIndexBar > 0] - 1  # Put first value
                # SettingWithCopyWarning:
                # A value is trying to be set on a copy of a slice from a DataFrame
                numpyValues = ratioDataBatch[ratio].values.copy()
                if instrument.symbol not in outputDict[ratio].columns:
                    outputDict[ratio][instrument.symbol] = None
                outputDict[ratio][
                    instrument.symbol][ratioIndexBar] = numpyValues
                # outputDict[ratio].fillna(method='ffill',inplace=True)

        if 'wrong' in outputDict.keys():
            outputDict['wrong'] += wrongInstrumentsSymbolLists
        else:
            outputDict['wrong'] = wrongInstrumentsSymbolLists

        outputDict['wrong'] = list(set(outputDict['wrong']))
示例#16
0
            def _pricing_iter():
                sid = 0
                with maybe_show_progress(
                        symbols,
                        show_progress,
                        label='Downloading Tradea Database pricing data ') as it, \
                        requests.Session() as session:
                    for symbol in it:
                        logger.debug('zipline bundle downloading %s' % symbol)
                        try:
                            instrument = Instrument(
                                symbol=symbol, asset_type=AssetType.us_equity)

                            df = self.historical_market_data_service.getHistoricalData(
                                instrument,
                                period=Period.day,
                                number_of_periods=1,
                                fromDate=start,
                                toDate=end,
                                bar_type=BarType.time_bar,
                                force_download=False,
                                cleanOutliers=False)
                        except Exception as e:
                            logger.error(
                                'Error downloading bundle zipline %s : %s' %
                                (symbol, str(e)))
                            print('Error downloading bundle zipline %s : %s' %
                                  (symbol, str(e)))
                            df = None
                            continue

                        # the start date is the date of the first trade and
                        # the end date is the date of the last trade
                        indexSet = df.index.copy()
                        indexSet = (indexSet + pd.DateOffset(hours=3)
                                    ) - pd.DateOffset(days=1)
                        df.index = indexSet

                        start_date = df.index[0]
                        end_date = df.index[-1]
                        # The auto_close date is the day after the last trade.
                        ac_date = end_date + pd.Timedelta(days=1)
                        metadata.iloc[
                            sid] = start_date, end_date, ac_date, symbol

                        df.rename(
                            columns={
                                Bar.open: 'open',
                                Bar.high: 'high',
                                Bar.low: 'low',
                                Bar.close: 'close',
                                Bar.volume: 'volume',
                            },
                            inplace=True,
                        )
                        yield sid, df
                        sid += 1
示例#17
0
    def getRatioDataBatch(self, instrument, ratio_list, fromDate, toDate=None, force_download=False):
        fromDate = convert_date(fromDate)
        toDate = convert_date(toDate)
        df_temp = None
        df = self.__getRatioDataDBBatch__(instrument, ratio_list, fromDate, toDate)
        fromDateDictTemp = None

        if df is not None:
            if (df.index[0] - fromDate).days > self.tresholdDaysUpdate and force_download:
                if fromDateDictTemp is not None and fromDateDictTemp <= fromDate:
                    logger.debug('max downloaded %s ,cant download more to %s' % (ratio_list, instrument))
                else:
                    # messageError = 'some data missing begining ratio %s in  %s fromDateDictTemp=%s  fromDate=%s' % (
                    # ratio, instrument.symbol, str(fromDateDictTemp), str(fromDate))
                    # logger.error(messageError)
                    df_temp = df.copy()
                    df = None

            elif (toDate - df.index[-1]).days > self.tresholdDaysUpdate and force_download:
                logger.debug('some data missing the end ')
                df_temp = df.copy()
                df = None
            elif (len(df.columns) < len(ratio_list) and force_download):
                logger.debug('some ratio  missing in database')
                df_temp = df.copy()
                df = None

        if df is None and force_download:
            logger.debug('data %s %s_%s not found in database trying to download and save it!' % (
                ratio_list, instrument.symbol, instrument.currency))
            df = self.getRatioDataProviderBatch(instrument, ratio_list, fromDate, toDate)
            # if df_to_save is not None:
            #     self.saveRatioDataFrameBatch(df_to_save, instrument, ratio_list)
            #     df = self.__getRatioDataDBBatch__(instrument, ratio_list, fromDate, toDate)
            # else:
            #     logger.error('Not pssible to download %s for %s' % (ratio_list, instrument))
            #     df = None

        if df is None:
            if df_temp is not None:
                logger.debug('ratioData: Cant download more , restoring DDBB files ')
                df = df_temp
            else:
                logger.error(
                    "Error getting ratio data for %s %s_%s" % (ratio_list, instrument.symbol, instrument.currency))
                return None
        if fromDateDictTemp is not None:
            fromDateSave = min(fromDate, fromDateDictTemp)
        else:
            fromDateSave = fromDate

        # if fromDateSave != fromDateDictTemp:
        #     self.ratio_instrument_from_dict_date[
        #         self.__getKeyDict__(ratio, instrument)] = fromDateSave  # add to dict and save
        #     self.__saveDictFromDate__()  # save from date cache to file

        return df
示例#18
0
        def error_handler(self, msg):
            """Handles the capturing of error messages"""
            if msg.errorCode in self.notErrorsList:
                return
            logger.error("IB error received %s :code[%i] %s" %
                         (msg, msg.errorCode, msg.errorMsg))

            print("Server Error: %s" % msg)
            self.receivedAllHistorical = True
 def downloadAllFinancials(self, instrument):
     try:
         symbol = self.getMorningStarTicker(instrument)
         functionTemp = self.cacher.cache(
             self.financial_downloader.download, ignore=['self'])
         return functionTemp(symbol)
     except Exception as e:
         logger.error('Error downloading morningstar data of %s:%s' %
                      (instrument, str(e)))
         return None
示例#20
0
 def __getRatioDataProvider__(self, instrument, ratio, fromDate, toDate=None):
     if ratio.startswith('fundamental'):
         ratio_data = self.routerProvider.getFundamentalDataProvider(ratio, instrument)
     elif ratio.startswith('quant'):
         ratio_data = QuantDataImpl
     else:
         logger.error('uknown type of ratio: %s' % ratio)
         return None
     ratio_fundamental_data = ratio_data(self.user_settings)
     return ratio_fundamental_data.download(instrument, ratio, fromDate, toDate)
示例#21
0
    def getHistoricalData(self, instrument, period, number_of_periods, fromDate, toDate=None,
                          bar_type=BarType.time_bar, force_download=False, endOfDayData=False, cleanOutliers=True):
        fromDate = convert_date(fromDate)
        toDate = convert_date(toDate)
        df_temp = None
        df = self.__getHistoricalDataDB__(instrument, period, number_of_periods, fromDate, toDate, bar_type)
        fromDateDictTemp = None

        # if self.__getKeyDict__(instrument) in self.instrument_from_dict_date:
        #     fromDateDictTemp = self.instrument_from_dict_date[self.__getKeyDict__(instrument)]

        if df is not None:
            if (df.index[0] - fromDate).days > self.tresholdDaysUpdate and force_download:
                if fromDateDictTemp is not None and fromDateDictTemp <= fromDate:
                    logger.debug(
                        'max downloaded ,cant download more to %s getting %d rows' % (instrument.symbol, len(df)))
                else:
                    # messageError = 'some data missing begining %s fromDateDictTemp=%s  fromDate=%s' % (
                    # instrument.symbol, str(fromDateDictTemp), str(fromDate))
                    # logger.error(messageError)
                    df_temp = df.copy()
                    df = None
            elif (toDate - df.index[-1]).days > self.tresholdDaysUpdate and force_download:
                logger.error('some data missing the end %s' % instrument.symbol)
                df_temp = df.copy()
                df = None
        if df is None and force_download:
            logger.debug('data not found in database trying to download and save it in %s!' % instrument.symbol)
            df_to_save = self.getHistoricalDataProvider(instrument, period, number_of_periods, fromDate, toDate,
                                                        bar_type)
            if df_to_save is not None:
                self.saveBarDataFrame(df_to_save, instrument, period, number_of_periods, bar_type)

            df = self.__getHistoricalDataDB__(instrument, period, number_of_periods, fromDate, toDate, bar_type)
        if df is None:
            if df_temp is not None:
                logger.debug('marketData: Cant download more , restoring DDBB files ')
                df = df_temp
            else:
                logger.error("Error getting historical data for %s_%s" % (instrument.symbol, instrument.currency))

        if fromDateDictTemp is not None:
            fromDateSave = min(fromDate, fromDateDictTemp)
        else:
            fromDateSave = fromDate

        # if fromDateSave != fromDateDictTemp:
        # self.instrument_from_dict_date[self.__getKeyDict__(instrument)] = fromDateSave  # add to dict and save
        # self.__saveDictFromDate__()  # save from date cache to file
        if cleanOutliers is True:
            df = self.cleanOutliersData(instrument, period, df)  # None checked inside

        if endOfDayData is True:
            df = self.__formatDatesEndOfDay__(df, fromDate, toDate)
        return df
示例#22
0
 def delete(self, itemName):
     # if instrument is None:
     #     # delete a complete collection
     #     self.store.delete_collection(self.collectionName)
     # else:
     # delete a item
     try:
         self.collection.delete_item(itemName)
         self.cacheDict = {}  # Cache delete everything....
     except Exception as e:
         logger.error("Error deleting collection %s:%s" % (itemName, e))
def getCapitalization(fundamental_data,
                      instrument,
                      fundamental_period,
                      fromDate=None,
                      toDate=None):
    import datetime
    from tradeasystems_connector.service.historical_market_data_service import HistoricalMarketDataService

    try:
        if fundamental_period == FundamentalPeriod.yearly:
            ratio = Ratio.fundamental_shares_Y
        else:
            ratio = Ratio.fundamental_shares_Q

        shares = fundamental_data.download(instrument, ratio, fromDate, toDate)
        if shares is None or len(shares) == 0:
            logger.error(
                'error downloading %s for %s => return capitalization none' %
                (ratio, instrument.symbol))
            return None

        marketDataServices = HistoricalMarketDataService(
            fundamental_data.user_settings)
        if fromDate is None:
            fromDate = shares.index[0].replace(
                tzinfo=None) - datetime.timedelta(days=3)
        else:
            fromDate = fromDate - datetime.timedelta(days=3)

        if toDate is None:
            toDate = shares.index[-1].replace(
                tzinfo=None) + datetime.timedelta(days=3)
        else:
            toDate = toDate + datetime.timedelta(days=3)

        barPrices = marketDataServices.getHistoricalData(instrument,
                                                         period=Period.day,
                                                         number_of_periods=1,
                                                         force_download=True,
                                                         fromDate=fromDate,
                                                         toDate=toDate)

        capitalization = shares.copy()
        closesIndexBar = barPrices.index.searchsorted(capitalization.index) - 1
        closesIndexBar = closesIndexBar[closesIndexBar < barPrices.shape[0]]

        shares[Bar.close] = barPrices[Bar.close][closesIndexBar].values
        capitalization[Ratio.ratio] = shares[Bar.close] * shares[Bar.close]
    except Exception as e:
        logger.error('Error getting capitalization for %s %s => return None' %
                     (instrument.symbol, str(e)))
        capitalization = None
    return capitalization
示例#24
0
    def download(self,
                 instrument,
                 period,
                 number_of_periods,
                 fromDate,
                 toDate=None):
        import pandas as pd
        self.filesInDirectory = glob.glob(self.inputPath + os.sep + "*.csv")
        logger.debug(
            "Downloading from dukascopy file %s_%s %i_%s from %s to %s" %
            (instrument.symbol, instrument.currency, number_of_periods, period,
             fromDate, toDate))
        toDateFile = self.getToDateFromFile(toDate, period)
        if period == Period.tick:
            # '%s%s_Ticks_%s-%s.csv'
            file = self.tick_filename_format % (
                instrument.symbol, instrument.currency,
                fromDate.strftime(self.filenameDateFormat),
                toDateFile.strftime(
                    self.filenameDateFormat))  # '%s%s_Candlestick_%i_%s_%s-%s
        else:
            # '%s%s_Candlestick_%i_%s_%a_%s-%s.csv'
            file = self.bar_filename_format % (
                instrument.symbol, instrument.currency, number_of_periods,
                self.period_dict[period], 'ASK',
                fromDate.strftime(self.filenameDateFormat),
                toDateFile.strftime(
                    self.filenameDateFormat))  # '%s%s_Candlestick_%i_%s_%s-%s

        for fileIterate in self.filesInDirectory:
            fileIterateName = fileIterate.split(os.sep)[-1]
            if fileIterateName == file:
                logger.debug("File %s found , processing" % file)
                try:
                    # data_downloaded = pd.DataFrame.from_csv(fileIterate, dayfirst=True)  # date_format=self.dateFormat)  date_parser=lambda x: datetime.strptime(x, '%d.%m.%Y %H:%M:%S.%f'))
                    data_downloaded = pd.read_csv(fileIterate)
                except Exception as e:
                    logger.error('Cant read file %s some errors there' % file)
                    return None
                outputComplete = self.formatHistorical(data_downloaded,
                                                       period=period)

                # if fromDate is not None and toDate is not None:
                #     outputComplete = outputComplete[fromDate: toDate]
                # elif fromDate is not None:
                #     outputComplete = outputComplete[fromDate:]
                # elif toDate is not None:
                #     outputComplete = outputComplete[:toDate]

                # self.markFileAsProcessed(file)
                return outputComplete
    def load(self, instrument, columnList=None, startTime=None, endTime=None):
        collectionName = self.collectionName
        super().setCollectionVariables(collectionName)
        data = super().load(self.getItemName(instrument), startTime, endTime)
        if data is not None and columnList is not None:
            try:
                data = data[columnList]
                return data
            except Exception as e:
                logger.error('Error loading vector of %s columns %s  : %s' %
                             (instrument, columnList, str(e)))
                data = None

        return data
示例#26
0
 def setTimeCorrect(self, outputComplete, instrument):
     import pandas as pd
     # must be in UTC directly
     try:
         if outputComplete is not None and outputComplete.index[0].hour == 0:
             hour, minute = getCloseTimeHourMinInUTC(instrument)
             outputComplete.index = outputComplete.index + pd.DateOffset(
                 hours=hour, minute=minute)
             # outputComplete.index=outputComplete.index.tz_convert( timezone_setting)
     except Exception as e:
         logger.error('Error setting time of fundamental data of %s:%s' %
                      (instrument.symbol, str(e)))
         outputComplete = None
     return outputComplete
def getBookValueLiabilities(fundamental_data, instrument, fundamental_period):
    # TODO review if something better cand do
    try:

        if fundamental_period == FundamentalPeriod.yearly:
            ratio = Ratio.fundamental_liabilities_Y
        else:
            ratio = Ratio.fundamental_liabilities_Q
        liabilities = fundamental_data.download(instrument, ratio)
    except Exception as e:
        logger.error('Error getting bv liabilities for %s %s => return None' %
                     (instrument.symbol, str(e)))
        return None
    return liabilities
示例#28
0
    def download(self,
                 instrument,
                 period,
                 number_of_periods,
                 fromDate,
                 toDate=None):
        self.lock.acquire()
        logger.debug("Downloading %s %s from %s to %s" %
                     (instrument.symbol, period, str(fromDate), str(toDate)))

        if instrument.asset_type == AssetType.forex:
            self.whatToShow = 'MIDPOINT'
        else:
            self.whatToShow = 'TRADES'

        contract = self.__makeContract__(instrument)

        period = self.period_dict[period]
        barSizeSetting = '%i %s' % (number_of_periods, period)
        if number_of_periods > 1 or period == Period.second:
            barSizeSetting = barSizeSetting + 's'

        outputAppended = None
        durationStr_list, toDateString_list = self.getPeriodsRequests(
            period, fromDate, toDate)
        for i in range(len(durationStr_list)):
            durationStr = durationStr_list[i]
            toDateString = toDateString_list[i]
            output_request = self.__makeRequestSingle__(
                contract, durationStr, toDateString, barSizeSetting)
            if outputAppended is None:
                outputAppended = output_request
            else:
                outputAppended = outputAppended.append(output_request)
        if outputAppended is None:
            logger.error("Couldnt download anything=> release return None")
        else:
            # clean unique index and sort
            outputAppended = outputAppended[~outputAppended.index.duplicated(
                keep='first')]
            outputAppended.sort_index(inplace=True)
            if fromDate is not None and toDate is not None:
                outputAppended = outputAppended[fromDate:toDate]
            elif fromDate is not None:
                outputAppended = outputAppended[fromDate:]
            elif toDate is not None:
                outputAppended = outputAppended[:toDate]
        self.lock.release()
        return outputAppended
示例#29
0
    def load(self, itemName, startTime=None, endTime=None):

        # Cache
        key = self.__getMD5_key__(itemName, startTime, endTime)
        if key in self.cacheDict.keys():
            return self.cacheDict[key]

        try:

            item = self.collection.item(itemName)
        except Exception as e:
            logger.error("symbol %s not found on database to load => return None %s" % (itemName, e))
            return None

        df = item.to_pandas()

        if startTime is not None:
            startTime = np.datetime64(startTime)
        if endTime is not None:
            endTime = np.datetime64(endTime)

        try:
            output = df
            mask = None

            if startTime is not None and endTime is not None:
                mask = (df.index >= startTime) & (df.index <= endTime)
                # output = df[startTime:endTime]
            elif startTime is not None:
                mask = (df.index >= startTime)
                # output = df[startTime:]
            elif endTime is not None:
                mask = (df.index <= endTime)
            if mask is not None:
                output = df.loc[mask]

            if len(output) == 0:
                output = None
            else:
                output = self.cleanDataframeDatetime(output)
                logger.debug("Successfully load from %s: %s a dataframe of %d rows %d columns" % (
                    self.collectionName, itemName, output.shape[0], output.shape[1]))
                self.cacheDict[key] = output  # Cache
        except Exception as e:
            logger.error('Error loading %s from %s return None :%s' % (itemName, item._path, str(e)))
            output = None

        return output
示例#30
0
 def download(self):
     filesInDirectory = self.getFilesInPath()
     output = True
     for file in filesInDirectory:
         if 'empty' in file:
             logger.debug('file: %s skipped=> empty is a FW' % file)
             continue
         instrument = self.getInstrument(file)
         logger.debug('Importing ratios of %s_%s' %
                      (instrument.symbol, instrument.currency))
         isImported = self.importExcel(file, instrument)
         if isImported is False:
             logger.error('Error ratios of %s_%s :%s' %
                          (instrument.symbol, instrument.currency, file))
         output = output and isImported
     return output