def testSimpleTraderWithTwoStocks(self): trader = SimpleTrader(PerfectPredictor(CompanyEnum.COMPANY_A), PerfectPredictor(CompanyEnum.COMPANY_B)) self.assertIsNotNone(trader) stock_market_data = read_stock_market_data( [CompanyEnum.COMPANY_A, CompanyEnum.COMPANY_B], [PERIOD_1]) self.assertIsNotNone(stock_market_data) portfolio = Portfolio(10000, []) self.assertIsNotNone(portfolio) # Buy stocks based on prediction: # SimpleTrader buys only stocks A again # Why doesn't SimpleTrader buy stocks B? # This is because `SimpleTrader` buys sequentially without considering future/earlier trade actions. So in case # of two BUY actions, all available cash is spent for buying the first stock - an issue I already raised (jh) order_list = trader.doTrade(portfolio, 0.0, stock_market_data) order_list = order_list self.assertIsNotNone(order_list) self.assertEqual(len(order_list), 1) order = order_list[0] self.assertEqual(order.action, OrderType.BUY) self.assertEqual(order.shares.amount, 287) self.assertEqual(order.shares.company_enum, CompanyEnum.COMPANY_A)
def test_update_and_draw(self): """ Tests: Evaluator#inspect_over_time Inspects portfolios over time and checks the results """ trader = SimpleTrader(RandomPredictor(), RandomPredictor()) evaluator = PortfolioEvaluator([trader] * 3, draw_results=False) full_stock_market_data = read_stock_market_data( [CompanyEnum.COMPANY_A, CompanyEnum.COMPANY_B], [PERIOD_1, PERIOD_2]) # Calculate and save the initial total portfolio value (i.e. the cash reserve) portfolio1 = Portfolio(50000.0, [], 'portfolio 1') portfolio2 = Portfolio(100000.0, [], 'portfolio 2') portfolio3 = Portfolio(150000.0, [], 'portfolio 3') portfolios_over_time = evaluator.inspect_over_time( full_stock_market_data, [portfolio1, portfolio2, portfolio3], evaluation_offset=100) last_date = list(portfolios_over_time['portfolio 1'].keys())[-1] assert last_date == datetime.strptime('2015-12-30', '%Y-%m-%d').date() data_row_lengths = set( [len(value_set) for value_set in portfolios_over_time.values()]) assert len(data_row_lengths) == 1 assert data_row_lengths.pop() == 100
def test_different_mappings(self): """ Tests: Evaluator#inspect_over_time and #inspect_over_time_with_mappings Compares if both methods return the same values """ stock_market_data = read_stock_market_data( [CompanyEnum.COMPANY_A], [PERIOD_1, PERIOD_2, PERIOD_3]) portfolio_1 = Portfolio(20000, [SharesOfCompany(CompanyEnum.COMPANY_A, 200)]) portfolio_2 = Portfolio(20000, [SharesOfCompany(CompanyEnum.COMPANY_A, 200)]) portfolios = [portfolio_1, portfolio_2] perfect_predictor = PerfectPredictor(CompanyEnum.COMPANY_A) trader_1 = SimpleTrader(perfect_predictor, perfect_predictor) trader_2 = SimpleTrader(perfect_predictor, perfect_predictor) trader_3 = SimpleTrader(RandomPredictor(), RandomPredictor()) traders = [trader_1, trader_2] portfolio_trader_mappings = list( zip(portfolios, traders, [None] * len(portfolios))) evaluator_1 = PortfolioEvaluator([trader_1, trader_1]) evaluator_2 = PortfolioEvaluator([]) evaluator_3 = PortfolioEvaluator([trader_3, trader_3]) # 1 Use evaluator that is initialized *with* traders and call `#inspect_over_time` (i.e. without traders) result_1 = evaluator_1.inspect_over_time(stock_market_data, portfolios, 100) # 2 Use evaluator that is initialized *without* traders and call `#inspect_over_time_with_mapping` # (i.e. with traders) result_2 = evaluator_2.inspect_over_time_with_mapping( stock_market_data, portfolio_trader_mappings, 100) # 3 Use evaluator that is initialized *with* traders and call `#inspect_over_time_with_mapping` # (i.e. with traders) - this should be no problem, because the traders given at initialization time are ignored result_3 = evaluator_3.inspect_over_time_with_mapping( stock_market_data, portfolio_trader_mappings, 100) assert result_1 == result_2 == result_3
def testSimpleTraderWithOneStock(self): trader = SimpleTrader(PerfectPredictor(CompanyEnum.COMPANY_A), PerfectPredictor(CompanyEnum.COMPANY_B)) self.assertIsNotNone(trader) stock_market_data = read_stock_market_data([CompanyEnum.COMPANY_A], [PERIOD_1]) self.assertIsNotNone(stock_market_data) portfolio = Portfolio(10000, []) self.assertIsNotNone(portfolio) # Buy stocks based on prediction: With 10000, we can buy 287 stocks A for 34.80 each order_list = trader.doTrade(portfolio, 0.0, stock_market_data) self.assertIsNotNone(order_list) self.assertEqual(len(order_list), 1) order = order_list[0] self.assertEqual(order.action, OrderType.BUY) self.assertEqual(order.shares.amount, 287) self.assertEqual(order.shares.company_enum, CompanyEnum.COMPANY_A)
def test_inspect__date_offset(self): """ Tests: Evaluator#inspect_over_time Flavour: Test with an date offset """ data = StockData([(date(2017, 1, 1), 150.0), (date(2017, 1, 2), 200.0), (date(2017, 1, 3), 250.0)]) stock_market_data = StockMarketData({CompanyEnum.COMPANY_A: data}) portfolio = Portfolio(20000, [SharesOfCompany(CompanyEnum.COMPANY_A, 200)]) evaluator = PortfolioEvaluator( [SimpleTrader(RandomPredictor(), RandomPredictor())]) portfolio_over_time: dict = \ evaluator.inspect_over_time(stock_market_data, [portfolio], date_offset=date(2017, 1, 2))['nameless'] assert date(2016, 12, 31) not in portfolio_over_time.keys() assert date(2017, 1, 1) in portfolio_over_time.keys() assert date(2017, 1, 2) in portfolio_over_time.keys() assert date(2017, 1, 3) not in portfolio_over_time.keys()