示例#1
0
    def __init__(self):
        super(trading_vix_env, self).__init__()

        self.action_space = spaces.box.Box(
            low=0,  #no position
            high=1,  #all in stock
            shape=(1, ),
            dtype=np.float32)

        high_observation = np.asarray([999, 999, 999, 999, 999, 999])
        self.observation_space = spaces.box.Box(low=-1 * high_observation,
                                                high=high_observation,
                                                dtype=np.float32)

        self.seed()

        self.max_trajectory_length = 201

        #load data
        index_data = pd.read_csv("^VIX.csv")
        index_data = index_data.rename(columns = {"Date":"Date",\
                                "Open":"index_open",\
                                "High":'index_high',\
                                'Low':'index_low',\
                                'Close':'index_close',\
                                'Adj Close':'index_adj_close',\
                                'Volume':'index_volume'})

        vix_price_data = pd.read_csv('VIXY.csv')
        vix_price_data = vix_price_data.rename(columns = {"Date":"Date",\
                                "Open":"vix_price_open",\
                                "High":'vix_price_high',\
                                'Low':'vix_price_low',\
                                'Close':'vix_price_close',\
                                'Adj Close':'vix_price_adj_close',\
                                'Volume':'vix_price_volume'})

        total_data = pd.merge(index_data,
                              vix_price_data,
                              on="Date",
                              how='inner')

        #build features
        #compute the exponential moving average
        mv_10 = total_data['index_adj_close'].ewm(span=10).mean()
        mv_20 = total_data['index_adj_close'].ewm(span=20).mean()
        mv_30 = total_data['index_adj_close'].ewm(span=30).mean()
        mv_50 = total_data['index_adj_close'].ewm(span=50).mean()
        mv_100 = total_data['index_adj_close'].ewm(span=100).mean()

        spot_to_mv_10 = total_data['index_adj_close'] / mv_10
        spot_to_mv_20 = total_data['index_adj_close'] / mv_20
        spot_to_mv_30 = total_data['index_adj_close'] / mv_30
        spot_to_mv_50 = total_data['index_adj_close'] / mv_50
        spot_to_mv_100 = total_data['index_adj_close'] / mv_100

        vix_measure = spot_to_mv_10 + spot_to_mv_20 + spot_to_mv_30 + spot_to_mv_50 + spot_to_mv_100
        vix_measure_list = vix_measure.tolist()

        index_feature_dataframe = pd.DataFrame()
        index_feature_dataframe['vix_price_adj_close'] = total_data[
            'vix_price_adj_close'][1:]  #[1:] for matching counting_days
        index_feature_dataframe['vix_adj_close'] = total_data[
            'index_adj_close'][1:]
        index_feature_dataframe['mv_ratio'] = vix_measure_list[1:]
        threshold_list = [5, 6, 7]
        for threshold in threshold_list:
            counting_days = trading_vix_utils.day_counter_helper(
                vix_measure_list, threshold)
            index_feature_dataframe['days_since_' +
                                    str(threshold)] = counting_days

        index_feature_dataframe = index_feature_dataframe.iloc[
            -1000:]  #there may be a vix regime change in 2018/1??
        index_feature_dataframe = index_feature_dataframe.reset_index(
            drop=True)
        self.index_feature_dataframe = index_feature_dataframe

        #other variables
        self.current_time_index = None
        self.quantity = None
        self.cash = None
        self.min_transaction_value = None
        self.buy_and_hold_stock_quantity = None
        self.current_portfolio_value = None
        self.current_trajectory_length = None
        self.has_at_least_one_sell = None
示例#2
0
    def __init__(self, threshold_list=[5, 6, 7]):

        seed_index = 0
        np.random.seed(seed_index)
        random.seed(seed_index)

        #load data
        index_data = pd.read_csv("^VIX.csv")
        index_data = index_data.rename(columns = {"Date":"Date",\
                                "Open":"index_open",\
                                "High":'index_high',\
                                'Low':'index_low',\
                                'Close':'index_close',\
                                'Adj Close':'index_adj_close',\
                                'Volume':'index_volume'})

        vix_price_data = pd.read_csv('VIXY.csv')
        vix_price_data = vix_price_data.rename(columns = {"Date":"Date",\
                                "Open":"vix_price_open",\
                                "High":'vix_price_high',\
                                'Low':'vix_price_low',\
                                'Close':'vix_price_close',\
                                'Adj Close':'vix_price_adj_close',\
                                'Volume':'vix_price_volume'})

        total_data = pd.merge(index_data,
                              vix_price_data,
                              on="Date",
                              how='inner')

        #build features
        #compute the exponential moving average
        mv_10 = total_data['index_adj_close'].ewm(span=10).mean()
        mv_20 = total_data['index_adj_close'].ewm(span=20).mean()
        mv_30 = total_data['index_adj_close'].ewm(span=30).mean()
        mv_50 = total_data['index_adj_close'].ewm(span=50).mean()
        mv_100 = total_data['index_adj_close'].ewm(span=100).mean()

        spot_to_mv_10 = total_data['index_adj_close'] / mv_10
        spot_to_mv_20 = total_data['index_adj_close'] / mv_20
        spot_to_mv_30 = total_data['index_adj_close'] / mv_30
        spot_to_mv_50 = total_data['index_adj_close'] / mv_50
        spot_to_mv_100 = total_data['index_adj_close'] / mv_100

        vix_measure = spot_to_mv_10 + spot_to_mv_20 + spot_to_mv_30 + spot_to_mv_50 + spot_to_mv_100
        vix_measure_list = vix_measure.tolist()

        index_feature_dataframe = pd.DataFrame()
        index_feature_dataframe['vix_price_adj_close'] = total_data[
            'vix_price_adj_close'][1:]  #[1:] for matching counting_days
        index_feature_dataframe['vix_adj_close'] = total_data[
            'index_adj_close'][1:]
        index_feature_dataframe['mv_ratio'] = vix_measure_list[1:]
        threshold_list = [5, 6, 7]
        for threshold in threshold_list:
            counting_days = trading_vix_utils.day_counter_helper(
                vix_measure_list, threshold)
            index_feature_dataframe['days_since_' +
                                    str(threshold)] = counting_days

        index_feature_dataframe = index_feature_dataframe.iloc[
            -1000:]  #there may be a vix regime change in 2018/1??
        index_feature_dataframe = index_feature_dataframe.reset_index(
            drop=True)
        self.index_feature_dataframe = index_feature_dataframe

        #other variables
        self.current_time_index = None
        self.quantity = None
        self.cash = None
        self.min_transaction_value = None
        self.buy_and_hold_stock_quantity = None
        self.current_portfolio_value = None