示例#1
0
def data_set_test():
    from predict import draw_box

    # global TEST_MODE
    from train import config_parser

    args = config_parser()
    data_set = get_test_data_set(args, percent_coord=True, year='2007')
    for _, (imgs, gt_boxes, gt_labels, gt_outs) in enumerate(data_set):
        # print(f'img:{imgs}')
        # print(f'targets:{targets}')
        print(f'gt_encode:{gt_outs}')
        for gt_out in gt_outs:
            print(f'gt_out:{gt_out.shape}')
            print(gt_out.nonzero().transpose(1, 0))
            gt_out_nonzero_split = torch.split(gt_out.nonzero().transpose(
                1, 0),
                                               dim=0,
                                               split_size_or_sections=1)
            print(f'gt_out_nonzero_split:{gt_out_nonzero_split}')
            print(f'gt_out:{gt_out[gt_out_nonzero_split]}')
        for img, gt_box, gt_label in zip(imgs, gt_boxes, gt_labels):
            gt_box_np = gt_box.cpu().numpy()
            gt_label_np = gt_label.cpu().numpy()
            print(f'gt_label_np:{gt_label_np}')
            print(
                f'gt_box_np{gt_box_np.shape},gt_label_np:{gt_label_np.shape}')
            img_np = (img * 255.0).cpu().numpy().astype(np.uint8)
            # print(f'img_np:{img_np}')
            img_np = img_np.transpose(1, 2, 0)  # [..., (2, 1, 0)]
            # img_np = cv2.cvtColor((img * 255.0).cpu().numpy(), cv2.COLOR_RGB2BGR)
            # print(img_np.shape)
            draw_box(img_np, gt_box_np, gt_label_np, relative_coord=True)
示例#2
0
#!/usr/bin/env python
# encoding: utf-8

import torch
import argparse
import figet
from train import config_parser, get_dataset

parser = argparse.ArgumentParser("infer.py")
config_parser(parser)
args = parser.parse_args()

if args.gpus:
    torch.cuda.set_device(args.gpus[0])

log = figet.utils.get_logging()


def main():
    log.debug("Loading data from '%s'." % args.data)
    data = torch.load(args.data + "/data.pt")
    vocabs = data["vocabs"]

    dev_data = get_dataset(data, args, "dev")
    test_data = get_dataset(data, args, "test")

    state_dict = torch.load("models/" + args.export_path + ".pt")
    args.type_dims = state_dict["type_lut.weight"].size(1)

    log.debug("Building model...")
    model = figet.Models.Model(args, vocabs)
示例#3
0
def _setup_nonrigid_nerf_network(results_folder, checkpoint="latest"):

    extra_sys_folder = os.path.join(results_folder, "backup/")

    import sys

    sys.path.append(extra_sys_folder)

    from train import (
        config_parser,
        create_nerf,
        render_path,
        get_parallelized_render_function,
        _get_multi_view_helper_mappings,
    )

    args = config_parser().parse_args(
        ["--config",
         os.path.join(results_folder, "logs", "args.txt")])

    print(args, flush=True)

    render_kwargs_train, render_kwargs_test, start, grad_vars, optimizer = create_nerf(
        args, autodecoder_variables=None, ignore_optimizer=True)

    def load_weights_into_network(render_kwargs_train,
                                  checkpoint=None,
                                  path=None):
        if path is not None and checkpoint is not None:
            raise RuntimeError("trying to load weights from two sources")
        if checkpoint is not None:
            path = os.path.join(results_folder, "logs", checkpoint + ".tar")
        checkpoint_dict = torch.load(path)
        start = checkpoint_dict["global_step"]
        # optimizer.load_state_dict(checkpoint_dict['optimizer_state_dict'])
        render_kwargs_train["network_fn"].load_state_dict(
            checkpoint_dict["network_fn_state_dict"])
        if render_kwargs_train["network_fine"] is not None:
            render_kwargs_train["network_fine"].load_state_dict(
                checkpoint_dict["network_fine_state_dict"])
        if render_kwargs_train["ray_bender"] is not None:
            render_kwargs_train["ray_bender"].load_state_dict(
                checkpoint_dict["ray_bender_state_dict"])
        return checkpoint_dict

    checkpoint_dict = load_weights_into_network(render_kwargs_train,
                                                checkpoint=checkpoint)

    def get_training_ray_bending_latents(checkpoint="latest"):
        training_latent_vectors = os.path.join(results_folder, "logs",
                                               checkpoint + ".tar")
        training_latent_vectors = torch.load(
            training_latent_vectors)["ray_bending_latent_codes"]
        return training_latent_vectors  # shape: frames x latent_size

    from run_nerf_helpers import determine_nerf_volume_extent
    from load_llff import load_llff_data

    def load_llff_dataset(
        render_kwargs_train_=None,
        render_kwargs_test_=None,
        return_nerf_volume_extent=False,
    ):

        datadir = args.datadir
        factor = args.factor
        spherify = args.spherify
        bd_factor = args.bd_factor

        # actual loading
        images, poses, bds, render_poses, i_test = load_llff_data(
            datadir,
            factor=factor,
            recenter=True,
            bd_factor=bd_factor,
            spherify=spherify,
        )
        extras = _get_multi_view_helper_mappings(images.shape[0])

        # poses
        hwf = poses[0, :3, -1]
        poses = poses[:, :3, :4]  # N x 3 x 4
        all_rotations = poses[:, :3, :3]  # N x 3 x 3
        all_translations = poses[:, :3, 3]  # N x 3

        render_poses = render_poses[:, :3, :4]
        render_rotations = render_poses[:, :3, :3]
        render_translations = render_poses[:, :3, 3]

        # splits
        i_test = []  # [i_test]
        if args.test_block_size > 0 and args.train_block_size > 0:
            print("splitting timesteps into training (" +
                  str(args.train_block_size) + ") and test (" +
                  str(args.test_block_size) + ") blocks")
            num_timesteps = len(dataset_extras["raw_timesteps"])
            test_timesteps = np.concatenate([
                np.arange(
                    min(num_timesteps, blocks_start + args.train_block_size),
                    min(
                        num_timesteps,
                        blocks_start + args.train_block_size +
                        args.test_block_size,
                    ),
                ) for blocks_start in np.arange(
                    0, num_timesteps, args.train_block_size +
                    args.test_block_size)
            ])
            i_test = [
                imageid for imageid, timestep in enumerate(
                    dataset_extras["imageid_to_timestepid"])
                if timestep in test_timesteps
            ]

        i_test = np.array(i_test)
        i_val = i_test
        i_train = np.array([
            i for i in np.arange(int(images.shape[0]))
            if (i not in i_test and i not in i_val)
        ])

        # near, far
        # if args.no_ndc:
        near = np.ndarray.min(bds) * 0.9
        far = np.ndarray.max(bds) * 1.0
        # else:
        #    near = 0.
        #    far = 1.
        bds_dict = {
            "near": near,
            "far": far,
        }
        if render_kwargs_train_ is not None:
            render_kwargs_train_.update(bds_dict)
        if render_kwargs_test_ is not None:
            render_kwargs_test_.update(bds_dict)

        if return_nerf_volume_extent:
            ray_params = checkpoint_dict["ray_params"]
            min_point, max_point = determine_nerf_volume_extent(
                get_parallelized_render_function(),
                poses,
                hwf[0],
                hwf[1],
                hwf[2],
                ray_params,
                render_kwargs_test,
            )
            extras["min_nerf_volume_point"] = min_point.detach()
            extras["max_nerf_volume_point"] = max_point.detach()

        return (
            images,
            poses,
            all_rotations,
            all_translations,
            bds,
            render_poses,
            render_rotations,
            render_translations,
            i_train,
            i_val,
            i_test,
            near,
            far,
            extras,
        )

    raw_render_path = render_path

    def render_convenient(
        rotations=None,
        translations=None,
        poses=None,
        detailed_output=None,
        ray_bending_latents=None,
        render_factor=None,
        with_ray_bending=None,
        custom_checkpoint_dict=None,
        hwf=None,
        chunk=None,
        custom_ray_params=None,
        custom_render_kwargs_test=None,
        rigidity_test_time_cutoff=None,
    ):

        # poses should have shape Nx3x4, rotations Nx3x3, translations Nx3 (or Nx3x1 or Nx1x3 or 3)
        # ray_bending_latents are a list of latent codes or an array of shape N x latent_size

        # poses
        if poses is None:
            if rotations is None or translations is None:
                raise RuntimeError
            rotations = torch.Tensor(rotations).reshape(-1, 3, 3)
            translations = torch.Tensor(translations).reshape(-1, 3, 1)
            poses = torch.cat([rotations, translations], -1)  # N x 3 x 4
        else:
            if rotations is not None or translations is not None:
                raise RuntimeError
        if len(poses.shape) > 3:
            raise RuntimeError
        if (
                poses.shape[-1] == 5
        ):  # the standard poses that are loaded by load_llff have hwf in the last column, but that's ignored anyway later on, so throw away here for simplicity
            poses = poses[..., :4]
        poses = torch.Tensor(poses).cuda().reshape(-1, 3, 4)

        # other parameters/arguments
        checkpoint_dict_ = (checkpoint_dict if custom_checkpoint_dict is None
                            else custom_checkpoint_dict)
        ray_params_ = (checkpoint_dict_["ray_params"]
                       if custom_ray_params is None else custom_ray_params)
        render_kwargs_test_ = (render_kwargs_test
                               if custom_render_kwargs_test is None else
                               custom_render_kwargs_test)
        if hwf is None:
            hwf = checkpoint_dict_["scripts_dict"]["hwf"]
        if chunk is None:
            chunk = args.chunk
        if render_factor is None:
            render_factor = 0
        if detailed_output is None:
            detailed_output = False
        if with_ray_bending is None:
            with_ray_bending = True

        if with_ray_bending:
            backup_rigidity_test_time_cutoff = render_kwargs_test_[
                "ray_bender"].rigidity_test_time_cutoff
            render_kwargs_test_[
                "ray_bender"].rigidity_test_time_cutoff = rigidity_test_time_cutoff
        else:
            backup_ray_bender = render_kwargs_test_["network_fn"].ray_bender
            render_kwargs_test_["network_fn"].ray_bender = (None, )
            render_kwargs_test_["ray_bender"] = None
            if "network_fine" in render_kwargs_test_:
                render_kwargs_test_["network_fine"].ray_bender = (None, )

        coarse_model = render_kwargs_test_["network_fn"]
        fine_model = render_kwargs_test_["network_fine"]
        ray_bender = render_kwargs_test_["ray_bender"]
        parallel_render = get_parallelized_render_function(
            coarse_model=coarse_model,
            fine_model=fine_model,
            ray_bender=ray_bender)
        with torch.no_grad():
            returned_outputs = render_path(
                poses,
                hwf,
                args.chunk,
                ray_params_,
                render_kwargs_test_,
                render_factor=render_factor,
                detailed_output=detailed_output,
                ray_bending_latents=ray_bending_latents,
                parallelized_render_function=parallel_render,
            )

        if with_ray_bending:
            render_kwargs_test_[
                "ray_bender"].rigidity_test_time_cutoff = backup_rigidity_test_time_cutoff
        else:
            render_kwargs_test_["network_fn"].ray_bender = backup_ray_bender
            render_kwargs_test_["ray_bender"] = backup_ray_bender[0]
            if "network_fine" in render_kwargs_test_:
                render_kwargs_test_[
                    "network_fine"].ray_bender = backup_ray_bender

        if detailed_output:
            rgbs, disps, details_and_rest = returned_outputs
            return (
                rgbs,
                disps,
                details_and_rest,
            )  # N x height x width x 3, N x height x width. RGB values in [0,1]
        else:
            rgbs, disps = returned_outputs
            return (
                rgbs,
                disps,
            )  # N x height x width x 3, N x height x width. RGB values in [0,1]

    from run_nerf_helpers import (
        to8b,
        visualize_disparity_with_jet_color_scheme,
        visualize_disparity_with_blinn_phong,
        visualize_ray_bending,
    )

    def convert_rgb_to_saveable(rgb):
        # input: float values in [0,1]
        # output: int values in [0,255]
        return to8b(rgb)

    def convert_disparity_to_saveable(disparity, normalize=True):
        # takes in a single disparity map of shape height x width.
        # can be saved via: imageio.imwrite(filename, convert_disparity_to_saveable(disparity))
        converted_disparity = (disparity / np.max(disparity)
                               if normalize else disparity.copy())
        converted_disparity = to8b(
            converted_disparity)  # height x width. int values in [0,255].
        return converted_disparity

    def convert_disparity_to_jet(disparity, normalize=True):
        converted_disparity = (disparity / np.max(disparity)
                               if normalize else disparity.copy())
        converted_disparity = to8b(
            visualize_disparity_with_jet_color_scheme(converted_disparity))
        return converted_disparity  # height x width x 3. int values in [0,255].

    def convert_disparity_to_phong(disparity, normalize=True):
        converted_disparity = (disparity / np.max(disparity)
                               if normalize else disparity.copy())
        converted_disparity = to8b(
            visualize_disparity_with_blinn_phong(converted_disparity))
        return converted_disparity  # height x width x 3. int values in [0,255].

    def store_ray_bending_mesh_visualization(initial_input_pts,
                                             input_pts,
                                             filename_prefix,
                                             subsampled_target=None):
        # initial_input_pts: rays x samples_per_ray x 3
        # input_pts: rays x samples_per_ray x 3
        return visualize_ray_bending(
            initial_input_pts,
            input_pts,
            filename_prefix,
            subsampled_target=subsampled_target,
        )

    sys.path.remove(extra_sys_folder)

    return (
        render_kwargs_train,
        render_kwargs_test,
        start,
        grad_vars,
        load_weights_into_network,
        checkpoint_dict,
        get_training_ray_bending_latents,
        load_llff_dataset,
        raw_render_path,
        render_convenient,
        convert_rgb_to_saveable,
        convert_disparity_to_saveable,
        convert_disparity_to_jet,
        convert_disparity_to_phong,
        store_ray_bending_mesh_visualization,
        to8b,
    )
示例#4
0
        transform=Yolov1Augmentation(size=448, percent_coord=percent_coord))
    return data.DataLoader(dataset,
                           args.batch_size,
                           num_workers=args.num_workers,
                           shuffle=True,
                           collate_fn=detection_collate,
                           pin_memory=False)


if __name__ == '__main__':
    from predict import draw_box

    # global TEST_MODE
    from train import config_parser

    args = config_parser()
    data_set = get_voc_data_set(args,
                                percent_coord=True,
                                test=True,
                                year='2012')
    for _, (imgs, gt_boxes, gt_labels, gt_outs) in enumerate(data_set):
        # print(f'img:{imgs}')
        # print(f'targets:{targets}')
        print(f'gt_encode:{gt_outs}')
        for gt_out in gt_outs:
            print(f'gt_out:{gt_out.shape}')
            print(gt_out.nonzero().transpose(1, 0))
            gt_out_nonzero_split = torch.split(gt_out.nonzero().transpose(
                1, 0),
                                               dim=0,
                                               split_size_or_sections=1)