def test_crack_captcha(test_step):
    output = crack_captcha_cnn()

    saver = tf.train.Saver()
    with tf.Session() as sess:
        saver.restore(sess, tf.train.latest_checkpoint('./models'))
        predict = tf.argmax(
            tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
        sum_correct = 0
        # for _ in range(test_step):
        for g_image in gen_image('./captcha_image'):

            text_source, image = g_image
            # print(text_source, image)
            image = convert2gray(image)
            captcha_image = image.flatten() / 255
            text_list = sess.run(predict,
                                 feed_dict={
                                     X: [captcha_image],
                                     keep_prob: 1
                                 })
            # text_list = sess.run(predict, feed_dict={X: np.reshape(captcha_image,(-1,4000)), keep_prob: 1})
            text = text_list[0].tolist()
            vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN)
            i = 0
            for n in text:
                vector[i * CHAR_SET_LEN + n] = 1
                i += 1
            predict_text = vec2text(vector)
            print("正确: {}  预测: {}".format(text_source, predict_text))

            if text_source.lower() == predict_text.lower():
                sum_correct += 1
        print('sum_correct:%s' % sum_correct)
        print('成功率:%s' % (sum_correct / test_step))
示例#2
0
def crack_captcha():
    output = crack_captcha_cnn()

    saver = tf.train.Saver()
    with tf.Session() as sess:
        saver.restore(sess, tf.train.latest_checkpoint('models'))

        predict = tf.argmax(
            tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
        count_out = 0
        right_number = 0
        while (True):
            root_text, image = gen_captcha_text_and_image()
            image = convert2gray(image)
            captcha_image = image.flatten() / 255
            text_list = sess.run(predict,
                                 feed_dict={
                                     X: [captcha_image],
                                     keep_prob: 1
                                 })

            text = text_list[0].tolist()
            vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN)
            i = 0
            for n in text:
                vector[i * CHAR_SET_LEN + n] = 1
                i += 1
            predict_text = vec2text(vector)
            print("正确: {}  预测: {}".format(root_text, predict_text))
            if count_out == 1000:
                break
            count_out += 1
示例#3
0
def crack_captcha(captcha_image):
    output = crack_captcha_cnn()

    saver = tf.train.Saver()
    predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
    with tf.Session() as sess:
        saver.restore(sess, "./Model/model.ckpt")

        text_list = sess.run(predict, feed_dict={X: [captcha_image], keep_prob: 1})
        text = text_list[0].tolist()
        return text
示例#4
0
def crack_captcha(captcha_image):
    output = crack_captcha_cnn()

    saver = tf.train.Saver()
    predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
    with tf.Session() as sess:
        saver.restore(sess, "./Model/model.ckpt")

        text_list = sess.run(predict,
                             feed_dict={
                                 X: [captcha_image],
                                 keep_prob: 1
                             })
        text = text_list[0].tolist()
        return text
示例#5
0
def crack_captcha(captcha_image):
	output = crack_captcha_cnn()

	saver = tf.train.Saver()
	with tf.Session() as sess:
		saver.restore(sess, tf.train.latest_checkpoint('./models/'))

		predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
		text_list = sess.run(predict, feed_dict={X: [captcha_image], keep_prob: 1})

		text = text_list[0].tolist()
		vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN)

		i = 0
		for n in text:
			vector[i * CHAR_SET_LEN + n] = 1
			i += 1

		return vec_to_text(vector) 
示例#6
0
def predict_result(captcha_image):

    output = crack_captcha_cnn()

    saver = tf.train.Saver()
    # tf.reset_default_graph()

    with tf.Session() as sess:
        saver.restore(sess, "F:/CNN_2/model_3/crack_capcha.model-2000")
        predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)

        text_list = sess.run(predict, feed_dict={X: [captcha_image], keep_prob: 1})
        # text_list = sess.run(predict, feed_dict={X: [captcha_image]})

        text = text_list[0].tolist()
        vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN)
        i = 0
        for n in text:
            vector[i * CHAR_SET_LEN + n] = 1
            i += 1
        return vec2text(vector)
示例#7
0
from flask import Flask, request, json
import tensorflow as tf
from train import crack_captcha_cnn, convert2gray, X, keep_prop, vec2text
import base64
import numpy as np
import re

app = Flask(__name__)


@app.route('/')
def hello_world():
    return 'Hello World!'


output = crack_captcha_cnn()
pre = tf.argmax(tf.reshape(output, [-1, 6, 36]), 2)
sess = tf.Session()
saver = tf.train.Saver()
saver.restore(sess, "../zf_yzm_train/capcha.model-5200")


@app.route('/yzm', methods=['POST', 'GET'])
def test():
    img_base64 = request.form['img_base64']
    # return img_base64
    img_base64 = re.sub('^data:image/.+;base64,', '', img_base64)
    img_base64 = base64.b64decode(img_base64)
    buffer = cStringIO.StringIO(img_base64)
    img = Image.open(buffer)
    img = np.array(img)