示例#1
0
def main(args):
    if args.cfg_file is not None:
        cfg.update_from_file(args.cfg_file)
    if args.opts:
        cfg.update_from_list(args.opts)
    if args.enable_ce:
        random.seed(0)
        np.random.seed(0)

    cfg.TRAINER_ID = int(os.getenv("PADDLE_TRAINER_ID", 0))
    cfg.NUM_TRAINERS = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))

    cfg.check_and_infer()
    print_info(pprint.pformat(cfg))
    train_quant(cfg)
示例#2
0
def train_quant(cfg):
    startup_prog = fluid.Program()
    train_prog = fluid.Program()
    if args.enable_ce:
        startup_prog.random_seed = 1000
        train_prog.random_seed = 1000
    drop_last = True

    dataset = SegDataset(file_list=cfg.DATASET.TRAIN_FILE_LIST,
                         mode=ModelPhase.TRAIN,
                         shuffle=True,
                         data_dir=cfg.DATASET.DATA_DIR)

    def data_generator():
        if args.use_mpio:
            data_gen = dataset.multiprocess_generator(
                num_processes=cfg.DATALOADER.NUM_WORKERS,
                max_queue_size=cfg.DATALOADER.BUF_SIZE)
        else:
            data_gen = dataset.generator()

        batch_data = []
        for b in data_gen:
            batch_data.append(b)
            if len(batch_data) == (cfg.BATCH_SIZE // cfg.NUM_TRAINERS):
                for item in batch_data:
                    yield item[0], item[1], item[2]
                batch_data = []
        # If use sync batch norm strategy, drop last batch if number of samples
        # in batch_data is less then cfg.BATCH_SIZE to avoid NCCL hang issues
        if not cfg.TRAIN.SYNC_BATCH_NORM:
            for item in batch_data:
                yield item[0], item[1], item[2]

    # Get device environment
    # places = fluid.cuda_places() if args.use_gpu else fluid.cpu_places()
    # place = places[0]
    gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0))
    place = fluid.CUDAPlace(gpu_id) if args.use_gpu else fluid.CPUPlace()
    places = fluid.cuda_places() if args.use_gpu else fluid.cpu_places()

    # Get number of GPU
    dev_count = cfg.NUM_TRAINERS if cfg.NUM_TRAINERS > 1 else len(places)
    print_info("#Device count: {}".format(dev_count))

    # Make sure BATCH_SIZE can divided by GPU cards
    assert cfg.BATCH_SIZE % dev_count == 0, (
        'BATCH_SIZE:{} not divisble by number of GPUs:{}'.format(
            cfg.BATCH_SIZE, dev_count))
    # If use multi-gpu training mode, batch data will allocated to each GPU evenly
    batch_size_per_dev = cfg.BATCH_SIZE // dev_count
    print_info("batch_size_per_dev: {}".format(batch_size_per_dev))

    data_loader, avg_loss, lr, pred, grts, masks = build_model(
        train_prog, startup_prog, phase=ModelPhase.TRAIN)
    data_loader.set_sample_generator(data_generator,
                                     batch_size=batch_size_per_dev,
                                     drop_last=drop_last)

    exe = fluid.Executor(place)
    exe.run(startup_prog)

    exec_strategy = fluid.ExecutionStrategy()
    # Clear temporary variables every 100 iteration
    if args.use_gpu:
        exec_strategy.num_threads = fluid.core.get_cuda_device_count()
    exec_strategy.num_iteration_per_drop_scope = 100
    build_strategy = fluid.BuildStrategy()

    if cfg.NUM_TRAINERS > 1 and args.use_gpu:
        dist_utils.prepare_for_multi_process(exe, build_strategy, train_prog)
        exec_strategy.num_threads = 1

    # Resume training
    begin_epoch = cfg.SOLVER.BEGIN_EPOCH
    if cfg.TRAIN.RESUME_MODEL_DIR:
        begin_epoch = load_checkpoint(exe, train_prog)
    # Load pretrained model
    elif os.path.exists(cfg.TRAIN.PRETRAINED_MODEL_DIR):
        load_pretrained_weights(exe, train_prog,
                                cfg.TRAIN.PRETRAINED_MODEL_DIR)
    else:
        print_info(
            'Pretrained model dir {} not exists, training from scratch...'.
            format(cfg.TRAIN.PRETRAINED_MODEL_DIR))

    fetch_list = [avg_loss.name, lr.name]
    if args.debug:
        # Fetch more variable info and use streaming confusion matrix to
        # calculate IoU results if in debug mode
        np.set_printoptions(precision=4,
                            suppress=True,
                            linewidth=160,
                            floatmode="fixed")
        fetch_list.extend([pred.name, grts.name, masks.name])
        cm = ConfusionMatrix(cfg.DATASET.NUM_CLASSES, streaming=True)

    not_quant_pattern = []
    if args.not_quant_pattern:
        not_quant_pattern = args.not_quant_pattern
    config = {
        'weight_quantize_type': 'channel_wise_abs_max',
        'activation_quantize_type': 'moving_average_abs_max',
        'quantize_op_types': ['depthwise_conv2d', 'mul', 'conv2d'],
        'not_quant_pattern': not_quant_pattern
    }
    compiled_train_prog = quant_aware(train_prog,
                                      place,
                                      config,
                                      for_test=False)
    eval_prog = quant_aware(train_prog, place, config, for_test=True)
    build_strategy.fuse_all_reduce_ops = False
    build_strategy.sync_batch_norm = False
    compiled_train_prog = compiled_train_prog.with_data_parallel(
        loss_name=avg_loss.name,
        exec_strategy=exec_strategy,
        build_strategy=build_strategy)

    # trainer_id = int(os.getenv("PADDLE_TRAINER_ID", 0))
    # num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
    global_step = 0
    all_step = cfg.DATASET.TRAIN_TOTAL_IMAGES // cfg.BATCH_SIZE
    if cfg.DATASET.TRAIN_TOTAL_IMAGES % cfg.BATCH_SIZE and drop_last != True:
        all_step += 1
    all_step *= (cfg.SOLVER.NUM_EPOCHS - begin_epoch + 1)

    avg_loss = 0.0
    best_mIoU = 0.0

    timer = Timer()
    timer.start()
    if begin_epoch > cfg.SOLVER.NUM_EPOCHS:
        raise ValueError((
            "begin epoch[{}] is larger than cfg.SOLVER.NUM_EPOCHS[{}]").format(
                begin_epoch, cfg.SOLVER.NUM_EPOCHS))

    if args.use_mpio:
        print_info("Use multiprocess reader")
    else:
        print_info("Use multi-thread reader")

    for epoch in range(begin_epoch, cfg.SOLVER.NUM_EPOCHS + 1):
        data_loader.start()
        while True:
            try:
                if args.debug:
                    # Print category IoU and accuracy to check whether the
                    # traning process is corresponed to expectation
                    loss, lr, pred, grts, masks = exe.run(
                        program=compiled_train_prog,
                        fetch_list=fetch_list,
                        return_numpy=True)
                    cm.calculate(pred, grts, masks)
                    avg_loss += np.mean(np.array(loss))
                    global_step += 1

                    if global_step % args.log_steps == 0:
                        speed = args.log_steps / timer.elapsed_time()
                        avg_loss /= args.log_steps
                        category_acc, mean_acc = cm.accuracy()
                        category_iou, mean_iou = cm.mean_iou()

                        print_info((
                            "epoch={} step={} lr={:.5f} loss={:.4f} acc={:.5f} mIoU={:.5f} step/sec={:.3f} | ETA {}"
                        ).format(epoch, global_step, lr[0], avg_loss, mean_acc,
                                 mean_iou, speed,
                                 calculate_eta(all_step - global_step, speed)))
                        print_info("Category IoU: ", category_iou)
                        print_info("Category Acc: ", category_acc)
                        sys.stdout.flush()
                        avg_loss = 0.0
                        cm.zero_matrix()
                        timer.restart()
                else:
                    # If not in debug mode, avoid unnessary log and calculate
                    loss, lr = exe.run(program=compiled_train_prog,
                                       fetch_list=fetch_list,
                                       return_numpy=True)
                    avg_loss += np.mean(np.array(loss))
                    global_step += 1

                    if global_step % args.log_steps == 0 and cfg.TRAINER_ID == 0:
                        avg_loss /= args.log_steps
                        speed = args.log_steps / timer.elapsed_time()
                        print((
                            "epoch={} step={} lr={:.5f} loss={:.4f} step/sec={:.3f} | ETA {}"
                        ).format(epoch, global_step, lr[0], avg_loss, speed,
                                 calculate_eta(all_step - global_step, speed)))
                        sys.stdout.flush()
                        avg_loss = 0.0
                        timer.restart()

            except fluid.core.EOFException:
                data_loader.reset()
                break
            except Exception as e:
                print(e)

        if (epoch % cfg.TRAIN.SNAPSHOT_EPOCH == 0
                or epoch == cfg.SOLVER.NUM_EPOCHS) and cfg.TRAINER_ID == 0:
            ckpt_dir = save_checkpoint(exe, eval_prog, epoch)

            if args.do_eval:
                print("Evaluation start")
                _, mean_iou, _, mean_acc = evaluate(
                    cfg=cfg,
                    ckpt_dir=ckpt_dir,
                    use_gpu=args.use_gpu,
                    use_mpio=args.use_mpio,
                    not_quant_pattern=args.not_quant_pattern,
                    convert=False)

                if mean_iou > best_mIoU:
                    best_mIoU = mean_iou
                    update_best_model(ckpt_dir)
                    print_info(
                        "Save best model {} to {}, mIoU = {:.4f}".format(
                            ckpt_dir,
                            os.path.join(cfg.TRAIN.MODEL_SAVE_DIR,
                                         'best_model'), mean_iou))

    # save final model
    if cfg.TRAINER_ID == 0:
        save_checkpoint(exe, eval_prog, 'final')