示例#1
0
        for gpu in gpus:
            tf.config.experimental.set_memory_growth(gpu, True)

    # get the original_dataset
    train_dataset, valid_dataset, test_dataset, train_count, valid_count, test_count = generate_datasets(
    )
    # load the model
    # model = get_model()
    # model.load_weights(filepath=save_model_dir)
    model = tf.saved_model.load(save_model_dir)

    # Get the accuracy on the test set
    loss_object = tf.keras.metrics.SparseCategoricalCrossentropy()
    test_loss = tf.keras.metrics.Mean()
    test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy()

    @tf.function
    def test_step(images, labels):
        predictions = model(images, training=False)
        t_loss = loss_object(labels, predictions)
        test_loss(t_loss)
        test_accuracy(labels, predictions)

    for features in test_dataset:
        test_images, test_labels = process_features(features)
        test_step(test_images, test_labels)
        print("loss: {:.5f}, test accuracy: {:.5f}".format(
            test_loss.result(), test_accuracy.result()))

    print("The accuracy on test set is: {:.3f}%".format(
        test_accuracy.result() * 100))
示例#2
0
    args = parser.parse_args()

    # get the original_dataset
    train_dataset, valid_dataset, test_dataset, train_count, valid_count, test_count = generate_datasets(
    )
    # load the model
    model = get_model(args.idx)
    model.load_weights(filepath=save_model_dir)
    # model = tf.saved_model.load(save_model_dir)

    # Get the accuracy on the test set
    loss_object = tf.keras.metrics.SparseCategoricalCrossentropy()
    test_loss = tf.keras.metrics.Mean()
    test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy()

    # @tf.function
    def test_step(images, labels):
        predictions = model(images, training=False)
        t_loss = loss_object(labels, predictions)
        test_loss(t_loss)
        test_accuracy(labels, predictions)

    for features in test_dataset:
        test_images, test_labels = process_features(features,
                                                    data_augmentation=False)
        test_step(test_images, test_labels)
        print("loss: {:.5f}, test accuracy: {:.5f}".format(
            test_loss.result(), test_accuracy.result()))

    print("The accuracy on test set is: {:.3f}%".format(
        test_accuracy.result() * 100))
示例#3
0
def main(argv):
    # Need the user to provide system argv for job_id and product_id, it is prepared for frontend calling
    if len(argv) < 2 or len(argv) > 3:
        print(
            "ERROR: Format error, refer to the usage: python test.py job_id product_id"
        )
    elif not argv[1].isdigit():
        print("ERROR: Format error, job_id must be in int format")
    elif not argv[1].isalnum():
        print(
            "ERROR: Format error, product_id must be consistent by character or number, without special character"
        )
    else:
        print("INFO: Start evaluating model " +
              datetime.datetime.now().strftime("%Y%m%d%H%M%S"))

        # GPU settings
        gpus = tf.config.list_physical_devices('GPU')
        if gpus:
            for gpu in gpus:
                tf.config.experimental.set_memory_growth(gpu, True)

        # Folder generate for log file and model saving
        log_dir, save_model_dir = folder_preparation(argv[1], argv[2])

        # get the original_dataset
        train_dataset, valid_dataset, test_dataset, train_count, valid_count, test_count = generate_datasets(
        )
        # load the model
        model = get_model()
        model.load_weights(filepath=save_model_dir + "model")
        # model = tf.saved_model.load(save_model_dir)

        # Get the accuracy on the test set
        loss_object = tf.keras.metrics.SparseCategoricalCrossentropy()
        test_loss = tf.keras.metrics.Mean()
        test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy()

        # @tf.function
        def test_step(images, labels):
            predictions = model(images, training=False)
            t_loss = loss_object(labels, predictions)
            test_loss(t_loss)
            test_accuracy(labels, predictions)

            return tf.math.argmax(predictions, axis=1).numpy()

        batch = 0
        for features in test_dataset:
            batch += 1
            test_images, test_labels = process_features(
                features, data_augmentation=False)
            predict_labels = test_step(test_images, test_labels)
            print(
                "loss: {:.5f}, test accuracy: {:.5f}, predict_labels:{}, test_labels:{}"
                .format(test_loss.result(), test_accuracy.result(),
                        predict_labels, test_labels))

            file = open(log_dir + "test_result_step" + ".log", "a")
            file.write("test\t")
            file.write(datetime.datetime.now().strftime("%Y%m%d%H%M%S") + "\t")
            file.write(str(batch) + "\t")
            file.write(str(test_accuracy.result().numpy()) + "\t")
            file.write(str(predict_labels) + "\t")
            file.write(str(test_labels) + "\n")
            file.close()

        print("The accuracy on test set is: {:.3f}%".format(
            test_accuracy.result() * 100))

        file = open(log_dir + "test_result" + ".log", "a")
        file.write(datetime.datetime.now().strftime("%Y%m%d%H%M%S") + "\t")
        file.write(str(test_accuracy.result()) + "\n")
        file.close()