def main(args): #Getting all training reports for analysis and creating json dictionary of information on file. train_reports=gen_file_lst(args.raw_results_dir) train_report_detail=extract_model_type(train_reports) with open(args.haralick_txt_params,'r') as fb: haralick_params=json.load(fb) # trn_image_dict = read_data(args.train_data_dir) tst_image_dict = read_data(args.test_data_dir) #Iterating through reports for analysis for data_combos in train_report_detail: data_combos['model_type']='svm_sgd' #Generate training numpy arrays for analysis #ipdb.set_trace() X_train, y_train = create_dataset(trn_image_dict,haralick_params,args.text_dir,data_combos['model_type']) X_test, y_test= create_dataset(tst_image_dict,haralick_params,args.text_dir,data_combos['model_type']) scaling = MinMaxScaler(feature_range=(0,1)).fit(X_train) X_train = scaling.transform(X_train) X_test = scaling.transform(X_test) #load data for analysis into dataframe tmp_arr_dict=np.load(data_combos['path'],allow_pickle=True) tmp_arr_df=tmp_arr_dict.item().get('cv_results_') tmp_arr_df=pd.DataFrame.from_dict(tmp_arr_df) tmp_arr_df['params'].apply(pd.Series) #Perform analysis for generating tmp_arr_df.sort_values('rank_test_score',ascending=True,inplace=True) trl_arr_df_params_lst=tmp_arr_df['params'][:5].tolist() #Restructure file name for analysis #ipdb.set_trace() if data_combos['model_type']!='svm_sgd': model_params_reformat=reformat_model_params(trl_arr_df_params_lst) else: model_params_reformat=trl_arr_df_params_lst #ipdb.set_trace() #Taking the top 5 performers forward for running analysis with training and testing curves. for vals in model_params_reformat: #Generating detailed tile for model performance. title2='_'.join(['_'.join((k,str(v))) for k,v in vals.items()]) title1='_'.join([v for k,v in data_combos.items() if k!='path']) title=title1+'_'+title2 tmp_estimator=gen_estimator(data_combos['model_type'],vals) tmp_fig=plot_learning_curve(tmp_estimator, title, X_train, y_train, cv=3,n_jobs=-1) #Save figure for analysis dst_dir_f=os.path.join(args.dest_dir,title+'.jpeg') tmp_fig.savefig(dst_dir_f)
def predict(): file = request.values['file'] select = request.form.get('comp_select') dataset = train.read_data(file) training_set, test_set = train.train_test_split(dataset) train.sc.fit(training_set) test_inputs = pred.test_inputs(60, dataset, test_set) test_inputs = train.sc.transform(test_inputs) X_test = pred.test_prep(60, test_inputs, test_set) # (251, 60, 1) model = load_model('models/' + str(select)) predicted_stock_price = model.predict(X_test) predicted_stock_price = train.sc.inverse_transform(predicted_stock_price) rmse = pred.return_rmse(test_set, predicted_stock_price) pred.plot_predictions(test_set, predicted_stock_price, nameURL='static/' + str(select).replace('.h5', "") + '.png') # the image URL to pass on to predict.html, it has to be in a 'static' folder imgname = 'static/' + str(select).replace('.h5', '.png') return render_template('predict.html', model=select, rmse=rmse, imgname=imgname)
def main(args): img_dict = read_data(args.input_dir) img_avrg_dim = det_avrg_img_size(img_dict) img_resize_dict = resize_imgs(img_dict, img_avrg_dim) write_output_img(img_resize_dict, args)
def prepare_date(self): from train import read_data_from_csv, read_csv, read_data testfile = os.path.join(os.path.abspath(self.config.data_paths), 'test.txt') self.test_token, self.test_tags = read_data(testfile) self.data_helper = DataHelper(None, None, None, isTrain=False) self.data_helper.load_data_from_file(self.config.checkpoint_path)
from model import Graph from train import read_data, extract_entity load_model_path = 'output/subject_model.weights' train_data, dev_data, test_data, id2class, class2id = read_data() _, test_model = Graph(0, 0, 0, 0) test_model.load_weights(load_model_path) def predict(content, cls): return extract_entity(content, cls, class2id, test_model) if __name__ == '__main__': while 1: content = input('content: ') cls = input('cls: ') res = predict(content, cls) print(res)
ax = fig.add_subplot(111) attention = attention.squeeze(1).cpu().detach().numpy() cax = ax.matshow(attention, cmap='bone') ax.tick_params(labelsize=15) ax.set_xticklabels([''] + ['<sos>'] + [t for t in _tokenizer(article)] + ['<eos>'], rotation=45) ax.set_yticklabels([''] +title) ax.xaxis.set_major_locator(ticker.MultipleLocator(1)) ax.yaxis.set_major_locator(ticker.MultipleLocator(1)) plt.show() ARTICLE, TITLE, train,test = read_data() INPUT_DIM = len(ARTICLE.vocab) OUTPUT_DIM = len(TITLE.vocab) ENC_EMB_DIM = 512 DEC_EMB_DIM = 512 ENC_HID_DIM = 256 DEC_HID_DIM = 256 ENC_DROPOUT = 0.5 DEC_DROPOUT = 0.5 PAD_IDX = ARTICLE.vocab.stoi['<pad>'] SOS_IDX = TITLE.vocab.stoi['<sos>'] EOS_IDX = TITLE.vocab.stoi['<eos>'] attn = Attention(ENC_HID_DIM, DEC_HID_DIM) encoder = models.Encoder(INPUT_DIM, ENC_EMB_DIM, ENC_HID_DIM, DEC_HID_DIM, ENC_DROPOUT)
plt.xlabel('Time') plt.ylabel('IBM Stock Price') plt.legend() plt.show() def return_rmse(test, predicted): rmse = math.sqrt(mean_squared_error(test, predicted)) print("The root mean squared error is {}.".format(rmse)) if __name__ == '__main__': parser = argparse.ArgumentParser(description="Do something.") #optional arguments are ID-ed by the - prefix, and the remaining arguments are assumed to be positional parser.add_argument("--path", "-file_path") parser.add_argument("--model", "-model") args = parser.parse_args(sys.argv[1:]) dataset = train.read_data(args.path) training_set, test_set = train.train_test_split(dataset) train.sc.fit(training_set) test_inputs = test_inputs(60, dataset) test_inputs = train.sc.transform(test_inputs) X_test = test_prep(60, test_inputs) # (251, 60, 1) model = load_model(args.model) predicted_stock_price = model.predict(X_test) predicted_stock_price = train.sc.inverse_transform(predicted_stock_price) return_rmse(test_set, predicted_stock_price) plot_predictions(test_set, predicted_stock_price)
encode_features = False graphite_relu = True z_agg = 'mean' dropout = 0. load_path = None num_gen_samples = 100 num_gen_conditions = 10 num_images_per_condition = 1 final_num_gen_samples = 1000 final_num_gen_conditions = 1000 final_num_images_per_condition = 10 evals_to_stop = 100 eval_only = False preprocessed_data, xa_mappings = read_data(dataset, num_train_examples, sample_train_randomly, identity_features, num_bond_types, num_atom_types, num_max_nodes) for lr, gcn_layer, autoregressive, gcn_relu, gcn_batch_norm, graphite_layer, z_dim, use_pos_weight in \ product(v_lrs, v_gcn_layers, v_autoregressives, v_gcn_relus, v_gcn_batch_norms, v_graphite_layers, v_z_dims, v_use_pos_weights): gcn_hiddens = [] gcn_aggs = [] gcn_relus = [] for l in range(gcn_layer): gcn_hiddens.append(z_dim) gcn_aggs.append('mean') gcn_relus.append(True if gcn_relu == 'all' or (gcn_relu == 'last' and l == gcn_layer - 1) else False) train(dataset, num_train_examples, sample_train_randomly, identity_features, num_bond_types, num_atom_types, num_max_nodes, model_type, lr, epochs, autoregressive, encode_features, gcn_batch_norm, gcn_hiddens, gcn_aggs, gcn_relus, graphite_relu, graphite_layer, z_dim, z_agg, dropout, num_gen_samples, num_gen_conditions, evals_to_stop, eval_only, load_path, use_pos_weight, preprocessed_data, xa_mappings,