示例#1
0
def display_page(pathname):
    if pathname == '/training':
        return Training()
    elif pathname == '/eda':
        return EDA()
    else:
        return Homepage()
示例#2
0
def main():
    args = parser.parse_args()
    args = vars(args)

    if args['data_set'] == 'UCF101':
        print('UCF101 data set')
        name_list = 'ucfTrainTestlist'
        num_classes = 101
    elif args['data_set'] == 'Breakfast':
        print("breakfast data set")
        num_classes = 37
        name_list = 'breakfastTrainTestList'
    else:
        print('Merl data set')
        num_classes = 5
        name_list = 'merlTrainTestList'

    if args['test']:
        Testing(name_list=name_list,
                num_classes=num_classes,
                modality='RGB',
                **args)
    else:
        Training(name_list=name_list,
                 num_classes=num_classes,
                 modality='RGB',
                 **args)
示例#3
0
def display_page(pathname):
    if pathname == '/training':
        return Training()
    elif pathname == '/training_perm':
        return Training_perm()
    elif pathname == '/eda':
        return EDA()
    elif pathname == '/eda_perm':
        return EDA_perm()
    elif pathname == '/userguide':
        return userGuide()
    elif pathname == '/buildmodel':
        return buildModel()
    elif pathname == '/h1bmodel':
        return h1bModel()
    elif pathname == '/permmodel':
        return permModel()
    elif pathname == '/aboutEDA':
        return aboutEDA()
    elif pathname == '/contactus':
        return contactus()
    elif pathname == '/documents':
        return documents()
    else:
        return Homepage()
示例#4
0
from keras.preprocessing.text import Tokenizer
from train import Training
import sys
import argparse

# parser = argparse.ArgumentParser(description='Train the word model.')
# parser.add_argument('-num_words', dest='n_words', type=str, required=True, help='Number of words to predict.')
# parser.add_argument('-load_model', dest='load_model', type=str, required=True, help='Path to save the model.')
# args = parser.parse_args()
file_path = input("Enter the path of corpus (include file extension): ")
model_path = input("Enter the path to your pretrained model (Leave blank if none): ")

valid = {"yes": True, "y": True, "ye": True,
             "no": False, "n": False}
model = Sequential()
train = Training(str(file_path))
try:
    model = models.load_model(model_path)
except ValueError:
    isTrain = input("Model not found! Do you want to train a new model? (yes/no): ")
    if valid[isTrain]:
        model = train.train_model()
        print("Training Done!")
    else:
        print("Thank you for using this tool.")
        sys.exit()
print()
seed_words = input("Enter your input: ")
num_words = int(input("Enter number of words to predict: "))
print()
result = train.generate_seq(model, seed_words, num_words)
示例#5
0
文件: main.py 项目: longyahui/GCNMDA
from utils import div_list
import tensorflow as tf
import numpy as np
from train import Training

if __name__ == "__main__":
    # Initial model
    gcn = Training()

    # Set random seed
    seed = 123
    np.random.seed(seed)
    tf.compat.v1.set_random_seed(seed)

    labels = np.loadtxt("data/adj.txt")
    reorder = np.arange(labels.shape[0])
    np.random.shuffle(reorder)

    cv_num = 5

    order = div_list(reorder.tolist(), cv_num)
    for i in range(cv_num):
        print("cross_validation:", '%01d' % (i))
        test_arr = order[i]
        arr = list(set(reorder).difference(set(test_arr)))
        np.random.shuffle(arr)
        train_arr = arr
        scores = gcn.train(train_arr, test_arr)
示例#6
0
        train_info = pickle.load(fp)
    with open(main_path_to_data + "/val_info", 'rb') as fp:
        valid_info = pickle.load(fp)
    with open(main_path_to_data + "/test_info", 'rb') as fp:
        test_info = pickle.load(fp)

    # Nastavimo hiperparametre v slovarju
    hyperparameters = {}
    hyperparameters['learning_rate'] = 0.2e-3  # learning rate
    hyperparameters['weight_decay'] = 0.0001  # weight decay
    hyperparameters['total_epoch'] = 20  # total number of epochs
    hyperparameters[
        'multiplicator'] = 0.95  # each epoch learning rate is decreased on LR*multiplicator

    # Ustvarimo ucni in testni razred
    TrainClass = Training(main_path_to_data,
                          unique_name=unique_name_for_this_run)
    TestClass = Testing(main_path_to_data)

    # Naucimo model za izbrane hiperparametre
    aucs, losses, path_to_model = TrainClass.train(train_info, valid_info,
                                                   hyperparameters)

    # Najboljsi model glede na validacijsko mnozico (zadnji je /LAST_model.pth)
    best_model = path_to_model + '/BEST_model.pth'

    # Testiramo nas model na testni mnozici
    auc, fpr, tpr, thresholds, trues, predictions = TestClass.test(
        test_info, best_model)

    print("Test set AUC result: ", auc)
示例#7
0
def objective(trial: optuna.trial.Trial):
    """
    Optuna objective function.

    """
    # Parse CLI arguments.
    args = parse_cli_args()

    config = HyperparamConfig()

    # Prepare dataset class.
    train_ds = Dataset(args.train_path)
    valid_ds = Dataset(args.valid_path)

    # Suggestions.
    # >>> TODO >>>

    optimizer_name = trial.suggest_categorical("optimizer",
                                               ["Adam", "RMSProp", "SGD"])
    learning_rate = trial.suggest_float("learning_rate",
                                        low=1e-6,
                                        hight=1e-1,
                                        log=True)
    n_layer = trial.suggest_int("n_layer", 32, 1024, step=32)

    # <<< TODO <<<

    model = make_model(n_layer=n_layer)
    optimizer = getattr(optim, optimizer_name)(model.parameters(),
                                               lr=learning_rate)

    training = Training(
        train_ds,
        valid_ds,
        model,
        optimizer,
        config.batch_size,
        config.epochs,
    )

    accuracy_list = []

    with mlflow.start_run(run_name=study.study_name):
        mlflow.log_params(trial.params)
        for epoch in range(config.epochs):
            # Training phase.
            training.model.train()
            train_loss, train_accuracy = training.train_epoch()
            mlflow.log_metrics(
                {
                    "train_loss": train_loss,
                    "train_accuracy": train_accuracy
                },
                step=epoch + 1,
            )

            # Validation phase.
            training.model.eval()
            valid_loss, valid_accuracy = training.validate()
            mlflow.log_metrics(
                {
                    "valid_loss": valid_loss,
                    "valid_accuracy": valid_accuracy
                },
                step=epoch + 1,
            )

            accuracy_list.append(valid_accuracy.item())

            trial.report(valid_accuracy.item(), epoch)

            if trial.should_prune():
                print("Pruned with epoch {}".format(epoch))
                raise optuna.exceptions.TrialPruned()

            print(
                "Epoch {}: TrainLoss: {:.5f}, ValidLoss: {:.5f}, ValidAcc: {:.5f}"
                .format(epoch + 1, train_loss, valid_loss, valid_accuracy))

        accuracy_list.sort()
        accuracy = np.mean(accuracy_list[-10:])
        mlflow.log_metrics({"top10_avg_accuracy": accuracy})

    return accuracy
示例#8
0
import pickle as pkl
import sys
from multiprocessing import Value

import numpy as np

from train import Training, parse_params

p = pkl.load(open(sys.argv[1] + "/model.pkl", "rb"))
args = pkl.load(open(sys.argv[1] + "/params.pkl", "rb"))
temp_p = parse_params()
for a in args.__dict__:
    setattr(temp_p, a, args.__dict__[a])
args = temp_p
print args
print
args.testing = True
setattr(args, "init_num_moves", 2)
args.fps = 60
t = Training(np.random.RandomState(), 0, p, Value("i", 0, lock=False), args)
示例#9
0
    nargs=1,
    action="store",
    default=0,
    dest="limit",
    help=
    "Limit genes in all datasets, it speeds up on data pre-processing development."
)
parser.add_argument("-t",
                    "--train",
                    action="store_true",
                    dest="train",
                    help="When the flag is activated, it performs training.")
parser.add_argument(
    "-e",
    "--evaluate",
    action="store_true",
    dest="evaluate",
    help="When the flag is activated, it predicts test classes.")

args = parser.parse_args()

if args.data_proc:
    dp = DataPreprocess("data", [2, 4, 6, 8, 10, 12, 15, 20, 25, 30],
                        int(args.limit[0]))

if args.train:
    tr = Training([2, 4, 6, 8, 10, 12, 15, 20, 25, 30])

if args.evaluate:
    evaluate()
示例#10
0
    else:
        loss_function = nn.CrossEntropyLoss()
        train_name += '_entp'
    # Validation loss
    val_loss = DiceLoss()

    # Set logs folder
    logger = Logger('../logs/' + train_name + '/')

    # Run training
    training = Training(model,
                        device,
                        dataset_train,
                        dataset_val,
                        optmizer,
                        loss_function,
                        eval_loss=val_loss,
                        target=target,
                        train_with_targets=train_with_targets,
                        logger=logger,
                        train_name=train_name,
                        arch=net_type)
    training.train(epochs=n_epochs, batch_size=batch_size)
    print('------------- END OF TRAINING -------------')
    print(' ')

    # Test network model
    print('Testing')
    print('')
    weights_path = '../weights/' + train_name + '_weights.pth.tar'
    # Output folder
    out_folder = '../predictions/' + train_name + '/'
示例#11
0
from predict import Predict
from rabbitmq.publisher import Publisher
from rabbitmq.consumer import Consumer
import json
import os
from mongodb.dao import MongoDBDAO
import logging
logging.basicConfig(level=logging.INFO)
from analytics.chatbasepublisher import ChatBasePublisher


publisher = Publisher()
chatbasepublisher = ChatBasePublisher()

ERROR_THRESHOLD = 0.70
training = Training()
predict = Predict(ERROR_THRESHOLD)


def processTraining():
    mongoDBDAO = MongoDBDAO()
    kbItems = mongoDBDAO.selectAllKBItems()
    kbArray = json.loads(kbItems)
    print("KB items",kbArray['kbItems'])
    if len(kbArray['kbItems']) > 0:
        training.train(kbItems)
        predict.loadModel()
        print("[INFO] Training Completed")
    else:
        print("[INFO] No KB to train")
示例#12
0
from train import Training

if __name__ == "__main__":

  gcn = Training()
  gcn.train(train_data,test_data)   
 
示例#13
0
class TrainTab(ttk.Frame):
    def __init__(self, *arg, **kw):
        super(TrainTab, self).__init__(*arg, **kw)
        self.pack(fill='x')

        # Stage 5 (sub_train -> fd1 - fd2 - trainButton)
        self.label1 = ttk.Label(
            self, text="Select folder containing training images")
        self.label1.pack(anchor='w')
        self.fd1 = FileDialog(self, mode='folder')
        self.fd1.filenameText.set('data/train')
        self.fd1.pack(fill='both', anchor='w')

        self.empty_space1 = ttk.Label(self, text="")
        self.empty_space1.pack()

        self.label2 = ttk.Label(self,
                                text="Select folder containing testing images")
        self.label2.pack(anchor='w')
        self.fd2 = FileDialog(self, mode='folder')
        self.fd2.filenameText.set('data/test')
        self.fd2.pack(fill='both', anchor='w')

        self.empty_space2 = ttk.Label(self, text="")
        self.empty_space2.pack()

        self.trainButton = ttk.Button(self,
                                      text="Train!",
                                      padding=PADDING,
                                      command=self.train_model)
        self.trainButton.pack(fill='both')

    def train_model(self):
        nbof_epochs = 30
        batch_size = 64
        nbof_images = 2000
        nbof_validation_images = 1000

        nbof_steps = nbof_images // batch_size
        nbof_validation_steps = nbof_validation_images // batch_size

        # TODO: check validity of training and testing folders
        #  - same number of classes
        # TODO: save class names
        # TODO: display training infos

        # "Training..." label
        self.label_progress_bar_steps = ttk.Label(
            self, text="Training...\nStep {:d}/{:d}".format(0, nbof_steps))
        self.label_progress_bar_steps.pack(anchor='w')

        # Create a progress bar for steps
        self.progress_bar_steps = ttk.Progressbar(self,
                                                  orient=HORIZONTAL,
                                                  maximum=nbof_steps,
                                                  mode='determinate')
        self.progress_bar_steps.pack(fill='both')

        # Epoch label
        self.label_progress_bar_epochs = ttk.Label(
            self, text="Epoch {:d}/{:d}".format(0, nbof_epochs))
        self.label_progress_bar_epochs.pack(anchor='w')

        # Create a progress bar for epochs
        self.progress_bar_epochs = ttk.Progressbar(self,
                                                   orient=HORIZONTAL,
                                                   maximum=nbof_epochs,
                                                   mode='determinate')
        self.progress_bar_epochs.pack(fill='both')

        # Create display for training info
        self.display_train_info = ttk.Label(
            self,
            font=("Courier", 10),
            text="{:<20}{:<20}{:<20}{:<20}\n{:<20.4f}{:<20.4f}{:<20.4f}{:<20.4f}"
            .format("Training Loss", "Training Accuracy", "Testing Loss",
                    "Testing Accuracy", 0, 0, 0, 0))
        self.display_train_info.pack(fill='both')

        # Update the frame
        self.update()

        # Initiate the training
        self.train = Training(self.fd1.filenameText.get(),
                              self.fd2.filenameText.get(), batch_size)

        train_loss = 0
        train_acc = 0
        test_loss = 0
        test_acc = 0

        def update_display(train_loss, train_acc, test_loss, test_acc):
            self.display_train_info[
                'text'] = "{:<20}{:<20}{:<20}{:<20}\n{:<20.4f}{:<20.4f}{:<20.4f}{:<20.4f}".format(
                    "Training Loss", "Training Accuracy", "Testing Loss",
                    "Testing Accuracy", train_loss, train_acc, test_loss,
                    test_acc)

        # Run the training
        for epoch in range(nbof_epochs):
            # Train on one epoch
            self.label_progress_bar_steps[
                'text'] = "Training...\nStep {:d}/{:d}".format(0, nbof_steps)
            self.progress_bar_steps['value'] = 0
            self.progress_bar_steps['maximum'] = nbof_steps
            self.progress_bar_steps.update()
            for step in range(nbof_steps):
                train_loss, train_acc = self.train.train_on_batch()

                self.label_progress_bar_steps[
                    'text'] = "Training...\nStep {:d}/{:d}".format(
                        step + 1, nbof_steps)
                self.progress_bar_steps['value'] = step + 1
                update_display(train_loss, train_acc, test_loss, test_acc)
                self.progress_bar_steps.update()

            # Validate
            self.label_progress_bar_steps[
                'text'] = "Validation...\nStep {:d}/{:d}".format(
                    0, nbof_validation_steps)
            self.progress_bar_steps['value'] = 0
            self.progress_bar_steps['maximum'] = nbof_validation_steps
            self.progress_bar_steps.update()
            test_loss = 0
            test_acc = 0
            for step in range(nbof_validation_steps):
                crt_test_loss, crt_test_acc = self.train.test_on_batch()
                test_loss, test_acc = test_loss + crt_test_loss, test_acc + crt_test_acc

                self.label_progress_bar_steps[
                    'text'] = "Validation...\nStep {:d}/{:d}".format(
                        step + 1, nbof_validation_steps)
                self.progress_bar_steps['value'] = step + 1
                self.progress_bar_steps.update()

            test_loss /= nbof_validation_steps
            test_acc /= nbof_validation_steps
            update_display(train_loss, train_acc, test_loss, test_acc)

            self.label_progress_bar_epochs['text'] = "Epoch {:d}/{:d}".format(
                epoch + 1, nbof_epochs)
            self.progress_bar_epochs['value'] = epoch + 1
            self.progress_bar_epochs.update()

        self.train.save_model(model_name='models/two_try.h5')

        self.label_end = ttk.Label(
            self,
            text=
            "Training done! The model can now be tested in the \"Test\" tab.")
        self.label_end.pack(anchor='w')
示例#14
0
    def train_model(self):
        nbof_epochs = 30
        batch_size = 64
        nbof_images = 2000
        nbof_validation_images = 1000

        nbof_steps = nbof_images // batch_size
        nbof_validation_steps = nbof_validation_images // batch_size

        # TODO: check validity of training and testing folders
        #  - same number of classes
        # TODO: save class names
        # TODO: display training infos

        # "Training..." label
        self.label_progress_bar_steps = ttk.Label(
            self, text="Training...\nStep {:d}/{:d}".format(0, nbof_steps))
        self.label_progress_bar_steps.pack(anchor='w')

        # Create a progress bar for steps
        self.progress_bar_steps = ttk.Progressbar(self,
                                                  orient=HORIZONTAL,
                                                  maximum=nbof_steps,
                                                  mode='determinate')
        self.progress_bar_steps.pack(fill='both')

        # Epoch label
        self.label_progress_bar_epochs = ttk.Label(
            self, text="Epoch {:d}/{:d}".format(0, nbof_epochs))
        self.label_progress_bar_epochs.pack(anchor='w')

        # Create a progress bar for epochs
        self.progress_bar_epochs = ttk.Progressbar(self,
                                                   orient=HORIZONTAL,
                                                   maximum=nbof_epochs,
                                                   mode='determinate')
        self.progress_bar_epochs.pack(fill='both')

        # Create display for training info
        self.display_train_info = ttk.Label(
            self,
            font=("Courier", 10),
            text="{:<20}{:<20}{:<20}{:<20}\n{:<20.4f}{:<20.4f}{:<20.4f}{:<20.4f}"
            .format("Training Loss", "Training Accuracy", "Testing Loss",
                    "Testing Accuracy", 0, 0, 0, 0))
        self.display_train_info.pack(fill='both')

        # Update the frame
        self.update()

        # Initiate the training
        self.train = Training(self.fd1.filenameText.get(),
                              self.fd2.filenameText.get(), batch_size)

        train_loss = 0
        train_acc = 0
        test_loss = 0
        test_acc = 0

        def update_display(train_loss, train_acc, test_loss, test_acc):
            self.display_train_info[
                'text'] = "{:<20}{:<20}{:<20}{:<20}\n{:<20.4f}{:<20.4f}{:<20.4f}{:<20.4f}".format(
                    "Training Loss", "Training Accuracy", "Testing Loss",
                    "Testing Accuracy", train_loss, train_acc, test_loss,
                    test_acc)

        # Run the training
        for epoch in range(nbof_epochs):
            # Train on one epoch
            self.label_progress_bar_steps[
                'text'] = "Training...\nStep {:d}/{:d}".format(0, nbof_steps)
            self.progress_bar_steps['value'] = 0
            self.progress_bar_steps['maximum'] = nbof_steps
            self.progress_bar_steps.update()
            for step in range(nbof_steps):
                train_loss, train_acc = self.train.train_on_batch()

                self.label_progress_bar_steps[
                    'text'] = "Training...\nStep {:d}/{:d}".format(
                        step + 1, nbof_steps)
                self.progress_bar_steps['value'] = step + 1
                update_display(train_loss, train_acc, test_loss, test_acc)
                self.progress_bar_steps.update()

            # Validate
            self.label_progress_bar_steps[
                'text'] = "Validation...\nStep {:d}/{:d}".format(
                    0, nbof_validation_steps)
            self.progress_bar_steps['value'] = 0
            self.progress_bar_steps['maximum'] = nbof_validation_steps
            self.progress_bar_steps.update()
            test_loss = 0
            test_acc = 0
            for step in range(nbof_validation_steps):
                crt_test_loss, crt_test_acc = self.train.test_on_batch()
                test_loss, test_acc = test_loss + crt_test_loss, test_acc + crt_test_acc

                self.label_progress_bar_steps[
                    'text'] = "Validation...\nStep {:d}/{:d}".format(
                        step + 1, nbof_validation_steps)
                self.progress_bar_steps['value'] = step + 1
                self.progress_bar_steps.update()

            test_loss /= nbof_validation_steps
            test_acc /= nbof_validation_steps
            update_display(train_loss, train_acc, test_loss, test_acc)

            self.label_progress_bar_epochs['text'] = "Epoch {:d}/{:d}".format(
                epoch + 1, nbof_epochs)
            self.progress_bar_epochs['value'] = epoch + 1
            self.progress_bar_epochs.update()

        self.train.save_model(model_name='models/two_try.h5')

        self.label_end = ttk.Label(
            self,
            text=
            "Training done! The model can now be tested in the \"Test\" tab.")
        self.label_end.pack(anchor='w')