class LogisticRegressionTrainer(Trainer):
    def __init__(
        self,
        n_epochs: int = 10,
        batch_size: int = 10,
        lr: float = 0.01,
        log_interval: int = 50,
    ):
        """
        Inherits from Trainer class.
        This class handles the training and test processes of the LogisticRegression
        model.

        :param n_epochs: number of epochs
        :param batch_size: the size of the batches
        :param lr: the learning rate
        :param log_interval: the interval at which logging and loss collection is
        performed during training
        """
        self.n_epochs = n_epochs
        self.batch_size = batch_size
        self.lr = lr
        self.log_interval = log_interval

        self.logger = TrainLogger()
        for attribute in self.__dict__:
            setattr(self.logger, attribute, self.__dict__[attribute])

        # It is important that the super initialization happens after
        # setting the trainlogger attributes.
        super(LogisticRegressionTrainer, self).__init__()

    def train(
        self,
        train_ivecs: ndarray,
        train_labels: ndarray,
        test_ivecs: ndarray = None,
        test_labels: ndarray = None,
        verbose: bool = False,
    ):
        """
        Train the Logistic Regression model.
        The test run is embedded here.

        :param train_ivecs: the array with all training i-vectors
        :param train_labels: the array with all training labels
        :param test_ivecs: the array with all test i-vectors
        :param test_labels: the array with all tesst labels
        :param verbose: if true, losses and metrics are printed during training
        :return: the trained model and the metrics from the last epoch
        """
        # Set up PyTorch compatible datasets and dataloader.
        train_dataset = SwissDialectDataset(train_ivecs, train_labels)
        test_dataset = SwissDialectDataset(test_ivecs, test_labels)
        train_loader = DataLoader(dataset=train_dataset,
                                  batch_size=self.batch_size)

        # Initialize and prepare model for training.
        input_dim = train_dataset.n_features
        output_dim = train_dataset.n_classes
        model = LogisticRegression(input_dim, output_dim)
        criterion = torch.nn.CrossEntropyLoss()
        optimizer = torch.optim.SGD(model.parameters(), lr=self.lr)

        self.logger.train_samples = train_dataset.n_samples
        self.logger.test_samples = test_dataset.n_samples
        self.logger.model_name = model.__class__.__name__

        train_losses = []
        train_counter = []
        test_losses = []
        test_counter = [
            i * len(train_loader.dataset) for i in range(self.n_epochs + 1)
        ]

        for epoch in range(1, self.n_epochs + 1):
            # Track date, time and training time.
            train_time = time.strftime("%d-%b-%Y-%H:%M:%S", time.localtime())
            start_time = time.time()
            for batch_id, (ivector_batch,
                           batch_labels) in enumerate(train_loader):
                ivector_batch = Variable(ivector_batch)
                batch_labels = Variable(batch_labels)
                optimizer.zero_grad()
                outputs = model(ivector_batch)
                loss = criterion(outputs, batch_labels)
                loss.backward()
                optimizer.step()

                # Store training losses.
                if batch_id % self.log_interval == 0:
                    train_losses.append(loss.item())
                    train_counter.append((epoch, (batch_id * self.batch_size)))

                    # Print training losses.
                    if verbose:
                        self.print_train_metrics(epoch, batch_id,
                                                 train_dataset.n_samples, loss)

            # Test and store test losses.
            metrics, test_loss = self.test(model, test_dataset, verbose)
            test_losses.append(test_loss)

            # Set up logging parameters and write metrics to logs.
            self.logger.epoch_no = epoch
            end_time = time.time()
            runtime = round(end_time - start_time, 2)

            self.logger.log_metrics(train_time, runtime, metrics)

        # Store losses to metrics and write losses to logs.
        metrics.store_losses(train_losses, train_counter, test_losses,
                             test_counter)
        self.logger.log_losses(train_time, metrics)

        return model, metrics

    def test(
        self,
        model: LogisticRegression,
        test_dataset: SwissDialectDataset,
        verbose: bool,
    ):
        """
        Test the Logistic Regression model on the training set.

        :param model: the model that has been trained before
        :param test_dataset: the test dataset that is made for PyCharm models
        and contains i-vectors and dialect labels
        :param verbose: if true, losses and metrics are printed during training
        :return: the test loss and the metrics
        """
        test_loader = DataLoader(dataset=test_dataset,
                                 batch_size=self.batch_size)
        criterion = torch.nn.CrossEntropyLoss()

        test_loss = 0
        correct = 0
        all_preds = torch.empty(0)
        with torch.no_grad():
            for ivector_batch, batch_labels in test_loader:
                output = model(ivector_batch)
                test_loss += criterion(output, batch_labels).item()
                pred = output.data.max(1, keepdim=True)[1]
                correct += pred.eq(batch_labels.data.view_as(pred)).sum()
                all_preds = torch.cat((all_preds, torch.flatten(pred)))

        # The metrics object requires numpy arrays instead of torch tensors.
        metrics = Metrics(test_dataset.labels.numpy(), all_preds.numpy())

        test_loss /= test_dataset.n_samples

        if verbose:
            self.print_test_metrics(test_loss, correct, test_dataset.n_samples,
                                    metrics)

        return metrics, test_loss

    def train_final_model(self,
                          ivectors: ndarray,
                          labels: ndarray,
                          verbose: bool = True):
        """
        Train a model with the whole dataset after having chosen the best
        model with cross validation.

        :param ivectors: the array with all i-vectors
        :param labels: the array with all labels
        :param verbose: if true, losses and metrics are printed during training
        :return: the trained final model
        """

        dataset = SwissDialectDataset(ivectors, labels)
        data_loader = DataLoader(dataset=dataset, batch_size=self.batch_size)

        input_dim = dataset.n_features
        output_dim = dataset.n_classes
        model = LogisticRegression(input_dim, output_dim)
        criterion = torch.nn.CrossEntropyLoss()
        optimizer = torch.optim.SGD(model.parameters(), lr=self.lr)

        for epoch in range(1, self.n_epochs + 1):
            for batch_id, (ivector_batch,
                           batch_labels) in enumerate(data_loader):
                ivector_batch = Variable(ivector_batch)
                batch_labels = Variable(batch_labels)
                optimizer.zero_grad()
                outputs = model(ivector_batch)
                loss = criterion(outputs, batch_labels)
                loss.backward()
                optimizer.step()

                # Print training losses.
                if verbose:
                    self.print_train_metrics(epoch, batch_id,
                                             dataset.n_samples, loss)

        return model
示例#2
0
class SVMTrainer(Trainer):
    def __init__(self, c=1.0, kernel="rbf", degree=3, max_iter=-1):
        """
        Inherits from Trainer class.
        This class handles the training and test processes of the SVM
        model.

        :param c: the penalty for all misclassified data samples in the model;
        the penalty for a datapoint is proportional to the distance of the
        point to the decision boundary
        :param kernel: function to transform the data in the desired way
        :param degree: Degree of the polynomial kernel function (‘poly’);
        ignored by all other kernel functions
        :param max_iter: limit of iterations; no limit if it is -1
        """
        self.c = c
        # TODO: Include gamma as parameter. High gamma: more likely to overfit
        # gamma only applicable to non-linear kernels
        self.kernel = kernel
        self.degree = degree
        self.max_iter = max_iter

        self.logger = TrainLogger()
        for attribute in self.__dict__:
            setattr(self.logger, attribute, self.__dict__[attribute])

        # It is important that the super initialization happens after
        # setting the trainlogger attributes.
        super(SVMTrainer, self).__init__()

    def train(
        self,
        train_ivectors: ndarray,
        train_labels: ndarray,
        test_ivectors: ndarray = None,
        test_labels: ndarray = None,
        verbose: bool = False,
    ):
        """
        Train the SVM model.
        The test run is embedded here.

        :param train_ivecs: the array with all training i-vectors
        :param train_labels: the array with all training labels
        :param test_ivecs: the array with all test i-vectors
        :param test_labels: the array with all tesst labels
        :param verbose: if true, losses and metrics are printed during training
        :return: the trained model and the metrics from the last epoch
        """
        self.logger.train_samples = train_labels.shape[0]
        self.logger.test_samples = test_labels.shape[0]

        train_time = time.strftime("%d-%b-%Y-%H:%M:%S", time.localtime())
        start_time = time.time()

        verbose = 1 if verbose is True else 0
        model = SVC(
            C=self.c,
            kernel=self.kernel,
            degree=self.degree,
            max_iter=self.max_iter,
            verbose=verbose,
        )

        self.logger.model_name = model.__class__.__name__

        model.fit(train_ivectors, train_labels)
        metrics = self.test(model, test_ivectors, test_labels)

        end_time = time.time()
        runtime = round(end_time - start_time, 2)
        self.logger.log_metrics(train_time, runtime, metrics)

        return model, metrics

    def test(self, model: SVC, test_ivectors: ndarray, test_labels: ndarray):
        """
        Test the SVM model on the training set.

        :param model: the model that has been trained before
        :param test_ivecs: the array with all test i-vectors
        :param test_labels: the array with all tesst labels
        :return: the test loss and the metrics
        """
        predictions = model.predict(test_ivectors)
        metrics = Metrics(test_labels, predictions)

        return metrics

    def train_final_model(self,
                          ivectors: ndarray,
                          labels: ndarray,
                          verbose: bool = True):
        """
        This method will only have to be implemented if the actual test data 
        can be used.
        """
        pass