示例#1
0
    model.train()
    for itr in range(1, args.niters + 1):
        optimizer.zero_grad()
        if args.spectral_norm: spectral_norm_power_iteration(model, 1)

        loss = compute_loss(args, model)
        loss_meter.update(loss.item())

        if len(regularization_coeffs) > 0:
            reg_states = get_regularization(model, regularization_coeffs)
            reg_loss = sum(
                reg_state * coeff for reg_state, coeff in zip(reg_states, regularization_coeffs) if coeff != 0
            )
            loss = loss + reg_loss

        total_time = count_total_time(model)
        nfe_forward = count_nfe(model)

        loss.backward()
        optimizer.step()

        nfe_total = count_nfe(model)
        nfe_backward = nfe_total - nfe_forward
        nfef_meter.update(nfe_forward)
        nfeb_meter.update(nfe_backward)

        time_meter.update(time.time() - end)
        tt_meter.update(total_time)

        log_message = (
            'Iter {:04d} | Time {:.4f}({:.4f}) | Loss {:.6f}({:.6f}) | NFE Forward {:.0f}({:.1f})'
示例#2
0
def train():

    model = build_model_tabular(args, 1).to(device)
    set_cnf_options(args, model)

    logger.info(model)
    logger.info("Number of trainable parameters: {}".format(
        count_parameters(model)))

    optimizer = optim.Adam(model.parameters(),
                           lr=args.lr,
                           weight_decay=args.weight_decay)

    time_meter = utils.RunningAverageMeter(0.93)
    loss_meter = utils.RunningAverageMeter(0.93)
    nfef_meter = utils.RunningAverageMeter(0.93)
    nfeb_meter = utils.RunningAverageMeter(0.93)
    tt_meter = utils.RunningAverageMeter(0.93)

    end = time.time()
    best_loss = float('inf')
    model.train()
    for itr in range(1, args.niters + 1):
        optimizer.zero_grad()

        loss = compute_loss(args, model)
        loss_meter.update(loss.item())

        total_time = count_total_time(model)
        nfe_forward = count_nfe(model)

        loss.backward()
        optimizer.step()

        nfe_total = count_nfe(model)
        nfe_backward = nfe_total - nfe_forward
        nfef_meter.update(nfe_forward)
        nfeb_meter.update(nfe_backward)

        time_meter.update(time.time() - end)
        tt_meter.update(total_time)

        log_message = (
            'Iter {:04d} | Time {:.4f}({:.4f}) | Loss {:.6f}({:.6f}) | NFE Forward {:.0f}({:.1f})'
            ' | NFE Backward {:.0f}({:.1f}) | CNF Time {:.4f}({:.4f})'.format(
                itr, time_meter.val, time_meter.avg, loss_meter.val,
                loss_meter.avg, nfef_meter.val, nfef_meter.avg, nfeb_meter.val,
                nfeb_meter.avg, tt_meter.val, tt_meter.avg))
        logger.info(log_message)

        if itr % args.val_freq == 0 or itr == args.niters:
            with torch.no_grad():
                model.eval()
                test_loss = compute_loss(args,
                                         model,
                                         batch_size=args.test_batch_size)
                test_nfe = count_nfe(model)
                log_message = '[TEST] Iter {:04d} | Test Loss {:.6f} | NFE {:.0f}'.format(
                    itr, test_loss, test_nfe)
                logger.info(log_message)

                if test_loss.item() < best_loss:
                    best_loss = test_loss.item()
                    utils.makedirs(args.save)
                    torch.save(
                        {
                            'args': args,
                            'state_dict': model.state_dict(),
                        }, os.path.join(args.save, 'checkpt.pth'))
                model.train()

        if itr % args.viz_freq == 0:
            with torch.no_grad():
                model.eval()

                xx = torch.linspace(-10, 10, 10000).view(-1, 1)
                true_p = data_density(xx)
                plt.plot(xx.view(-1).cpu().numpy(),
                         true_p.view(-1).exp().cpu().numpy(),
                         label='True')

                true_p = model_density(xx, model)
                plt.plot(xx.view(-1).cpu().numpy(),
                         true_p.view(-1).exp().cpu().numpy(),
                         label='Model')

                utils.makedirs(os.path.join(args.save, 'figs'))
                plt.savefig(
                    os.path.join(args.save, 'figs', '{:06d}.jpg'.format(itr)))
                plt.close()

                model.train()

        end = time.time()

    logger.info('Training has finished.')
示例#3
0
def main():
    #os.system('shutdown -c')  # cancel previous shutdown command

    if write_log:
        utils.makedirs(args.save)
        logger = utils.get_logger(logpath=os.path.join(args.save, 'logs'),
                                  filepath=os.path.abspath(__file__))

        logger.info(args)

        args_file_path = os.path.join(args.save, 'args.yaml')
        with open(args_file_path, 'w') as f:
            yaml.dump(vars(args), f, default_flow_style=False)

    if args.distributed:
        if write_log: logger.info('Distributed initializing process group')
        torch.cuda.set_device(args.local_rank)
        distributed.init_process_group(backend=args.dist_backend,
                                       init_method=args.dist_url,
                                       world_size=dist_utils.env_world_size(),
                                       rank=env_rank())
        assert (dist_utils.env_world_size() == distributed.get_world_size())
        if write_log:
            logger.info("Distributed: success (%d/%d)" %
                        (args.local_rank, distributed.get_world_size()))

    # get deivce
    # device = torch.device("cuda:%d"%torch.cuda.current_device() if torch.cuda.is_available() else "cpu")
    device = "cpu"
    cvt = lambda x: x.type(torch.float32).to(device, non_blocking=True)

    # load dataset
    train_loader, test_loader, data_shape = get_dataset(args)

    trainlog = os.path.join(args.save, 'training.csv')
    testlog = os.path.join(args.save, 'test.csv')

    traincolumns = [
        'itr', 'wall', 'itr_time', 'loss', 'bpd', 'fe', 'total_time',
        'grad_norm'
    ]
    testcolumns = [
        'wall', 'epoch', 'eval_time', 'bpd', 'fe', 'total_time',
        'transport_cost'
    ]

    # build model
    regularization_fns, regularization_coeffs = create_regularization_fns(args)
    model = create_model(args, data_shape, regularization_fns)
    # model = model.cuda()
    if args.distributed:
        model = dist_utils.DDP(model,
                               device_ids=[args.local_rank],
                               output_device=args.local_rank)

    traincolumns = append_regularization_keys_header(traincolumns,
                                                     regularization_fns)

    if not args.resume and write_log:
        with open(trainlog, 'w') as f:
            csvlogger = csv.DictWriter(f, traincolumns)
            csvlogger.writeheader()
        with open(testlog, 'w') as f:
            csvlogger = csv.DictWriter(f, testcolumns)
            csvlogger.writeheader()

    set_cnf_options(args, model)

    if write_log: logger.info(model)
    if write_log:
        logger.info("Number of trainable parameters: {}".format(
            count_parameters(model)))
    if write_log:
        logger.info('Iters per train epoch: {}'.format(len(train_loader)))
    if write_log: logger.info('Iters per test: {}'.format(len(test_loader)))

    # optimizer
    if args.optimizer == 'adam':
        optimizer = optim.Adam(model.parameters(),
                               lr=args.lr,
                               weight_decay=args.weight_decay)
    elif args.optimizer == 'sgd':
        optimizer = optim.SGD(model.parameters(),
                              lr=args.lr,
                              weight_decay=args.weight_decay,
                              momentum=0.9,
                              nesterov=False)

    # restore parameters
    if args.resume is not None:
        checkpt = torch.load(
            args.resume,
            map_location=lambda storage, loc: storage.cuda(args.local_rank))
        model.load_state_dict(checkpt["state_dict"])
        if "optim_state_dict" in checkpt.keys():
            optimizer.load_state_dict(checkpt["optim_state_dict"])
            # Manually move optimizer state to device.
            for state in optimizer.state.values():
                for k, v in state.items():
                    if torch.is_tensor(v):
                        state[k] = cvt(v)

    # For visualization.
    if write_log:
        fixed_z = cvt(torch.randn(min(args.test_batch_size, 100), *data_shape))

    if write_log:
        time_meter = utils.RunningAverageMeter(0.97)
        bpd_meter = utils.RunningAverageMeter(0.97)
        loss_meter = utils.RunningAverageMeter(0.97)
        steps_meter = utils.RunningAverageMeter(0.97)
        grad_meter = utils.RunningAverageMeter(0.97)
        tt_meter = utils.RunningAverageMeter(0.97)

    if not args.resume:
        best_loss = float("inf")
        itr = 0
        wall_clock = 0.
        begin_epoch = 1
    else:
        chkdir = os.path.dirname(args.resume)
        tedf = pd.read_csv(os.path.join(chkdir, 'test.csv'))
        trdf = pd.read_csv(os.path.join(chkdir, 'training.csv'))
        wall_clock = trdf['wall'].to_numpy()[-1]
        itr = trdf['itr'].to_numpy()[-1]
        best_loss = tedf['bpd'].min()
        begin_epoch = int(tedf['epoch'].to_numpy()[-1] +
                          1)  # not exactly correct

    if args.distributed:
        if write_log: logger.info('Syncing machines before training')
        dist_utils.sum_tensor(torch.tensor([1.0]).float().cuda())

    for epoch in range(begin_epoch, args.num_epochs + 1):
        if not args.validate:
            model.train()

            with open(trainlog, 'a') as f:
                if write_log: csvlogger = csv.DictWriter(f, traincolumns)

                for _, (x, y) in enumerate(train_loader):
                    start = time.time()
                    update_lr(optimizer, itr)
                    optimizer.zero_grad()

                    # cast data and move to device
                    x = add_noise(cvt(x), nbits=args.nbits)
                    #x = x.clamp_(min=0, max=1)
                    # compute loss
                    bpd, (x, z), reg_states = compute_bits_per_dim(x, model)
                    if np.isnan(bpd.data.item()):
                        raise ValueError('model returned nan during training')
                    elif np.isinf(bpd.data.item()):
                        raise ValueError('model returned inf during training')

                    loss = bpd
                    if regularization_coeffs:
                        reg_loss = sum(reg_state * coeff
                                       for reg_state, coeff in zip(
                                           reg_states, regularization_coeffs)
                                       if coeff != 0)
                        loss = loss + reg_loss
                    total_time = count_total_time(model)

                    loss.backward()
                    nfe_opt = count_nfe(model)
                    if write_log: steps_meter.update(nfe_opt)
                    grad_norm = torch.nn.utils.clip_grad_norm_(
                        model.parameters(), args.max_grad_norm)

                    optimizer.step()

                    itr_time = time.time() - start
                    wall_clock += itr_time

                    batch_size = x.size(0)
                    metrics = torch.tensor([
                        1., batch_size,
                        loss.item(),
                        bpd.item(), nfe_opt, grad_norm, *reg_states
                    ]).float()

                    rv = tuple(torch.tensor(0.) for r in reg_states)

                    total_gpus, batch_total, r_loss, r_bpd, r_nfe, r_grad_norm, *rv = dist_utils.sum_tensor(
                        metrics).cpu().numpy()

                    if write_log:
                        time_meter.update(itr_time)
                        bpd_meter.update(r_bpd / total_gpus)
                        loss_meter.update(r_loss / total_gpus)
                        grad_meter.update(r_grad_norm / total_gpus)
                        tt_meter.update(total_time)

                        fmt = '{:.4f}'
                        logdict = {
                            'itr': itr,
                            'wall': fmt.format(wall_clock),
                            'itr_time': fmt.format(itr_time),
                            'loss': fmt.format(r_loss / total_gpus),
                            'bpd': fmt.format(r_bpd / total_gpus),
                            'total_time': fmt.format(total_time),
                            'fe': r_nfe / total_gpus,
                            'grad_norm': fmt.format(r_grad_norm / total_gpus),
                        }
                        if regularization_coeffs:
                            rv = tuple(v_ / total_gpus for v_ in rv)
                            logdict = append_regularization_csv_dict(
                                logdict, regularization_fns, rv)
                        csvlogger.writerow(logdict)

                        if itr % args.log_freq == 0:
                            log_message = (
                                "Itr {:06d} | Wall {:.3e}({:.2f}) | "
                                "Time/Itr {:.2f}({:.2f}) | BPD {:.2f}({:.2f}) | "
                                "Loss {:.2f}({:.2f}) | "
                                "FE {:.0f}({:.0f}) | Grad Norm {:.3e}({:.3e}) | "
                                "TT {:.2f}({:.2f})".format(
                                    itr, wall_clock, wall_clock / (itr + 1),
                                    time_meter.val, time_meter.avg,
                                    bpd_meter.val, bpd_meter.avg,
                                    loss_meter.val, loss_meter.avg,
                                    steps_meter.val, steps_meter.avg,
                                    grad_meter.val, grad_meter.avg,
                                    tt_meter.val, tt_meter.avg))
                            if regularization_coeffs:
                                log_message = append_regularization_to_log(
                                    log_message, regularization_fns, rv)
                            logger.info(log_message)

                    itr += 1

        # compute test loss
        model.eval()
        if args.local_rank == 0:
            utils.makedirs(args.save)
            torch.save(
                {
                    "args":
                    args,
                    "state_dict":
                    model.module.state_dict()
                    if torch.cuda.is_available() else model.state_dict(),
                    "optim_state_dict":
                    optimizer.state_dict(),
                    "fixed_z":
                    fixed_z.cpu()
                }, os.path.join(args.save, "checkpt.pth"))
        if epoch % args.val_freq == 0 or args.validate:
            with open(testlog, 'a') as f:
                if write_log: csvlogger = csv.DictWriter(f, testcolumns)
                with torch.no_grad():
                    start = time.time()
                    if write_log: logger.info("validating...")

                    lossmean = 0.
                    meandist = 0.
                    steps = 0
                    tt = 0.
                    for i, (x, y) in enumerate(test_loader):
                        sh = x.shape
                        x = shift(cvt(x), nbits=args.nbits)
                        loss, (x, z), _ = compute_bits_per_dim(x, model)
                        dist = (x.view(x.size(0), -1) -
                                z).pow(2).mean(dim=-1).mean()
                        meandist = i / (i + 1) * dist + meandist / (i + 1)
                        lossmean = i / (i + 1) * lossmean + loss / (i + 1)

                        tt = i / (i + 1) * tt + count_total_time(model) / (i +
                                                                           1)
                        steps = i / (i + 1) * steps + count_nfe(model) / (i +
                                                                          1)

                    loss = lossmean.item()
                    metrics = torch.tensor([1., loss, meandist, steps]).float()

                    total_gpus, r_bpd, r_mdist, r_steps = dist_utils.sum_tensor(
                        metrics).cpu().numpy()
                    eval_time = time.time() - start

                    if write_log:
                        fmt = '{:.4f}'
                        logdict = {
                            'epoch': epoch,
                            'eval_time': fmt.format(eval_time),
                            'bpd': fmt.format(r_bpd / total_gpus),
                            'wall': fmt.format(wall_clock),
                            'total_time': fmt.format(tt),
                            'transport_cost': fmt.format(r_mdist / total_gpus),
                            'fe': '{:.2f}'.format(r_steps / total_gpus)
                        }

                        csvlogger.writerow(logdict)

                        logger.info(
                            "Epoch {:04d} | Time {:.4f}, Bit/dim {:.4f}, Steps {:.4f}, TT {:.2f}, Transport Cost {:.2e}"
                            .format(epoch, eval_time, r_bpd / total_gpus,
                                    r_steps / total_gpus, tt,
                                    r_mdist / total_gpus))

                    loss = r_bpd / total_gpus

                    if loss < best_loss and args.local_rank == 0:
                        best_loss = loss
                        shutil.copyfile(os.path.join(args.save, "checkpt.pth"),
                                        os.path.join(args.save, "best.pth"))

            # visualize samples and density
            if write_log:
                with torch.no_grad():
                    fig_filename = os.path.join(args.save, "figs",
                                                "{:04d}.jpg".format(epoch))
                    utils.makedirs(os.path.dirname(fig_filename))
                    generated_samples, _, _ = model(fixed_z, reverse=True)
                    generated_samples = generated_samples.view(-1, *data_shape)
                    nb = int(np.ceil(np.sqrt(float(fixed_z.size(0)))))
                    save_image(unshift(generated_samples, nbits=args.nbits),
                               fig_filename,
                               nrow=nb)
            if args.validate:
                break
示例#4
0
    best_loss = float("inf")
    for epoch in range(args.begin_epoch, args.num_epochs + 1):
        aug_model.train()
        for temp_idx, x in enumerate(train_loader):
            ## x is a tuple of (values, times, stdv, masks)
            start = time.time()
            optimizer.zero_grad()

            # cast data and move to device
            x = map(cvt, x)
            values, times, vars, masks = x
            # compute loss
            loss = run_model(args, aug_model, values, times, vars, masks)

            total_time = count_total_time(aug_model)
            ## Assume the base distribution be Brownian motion

            if regularization_coeffs:
                reg_states = get_regularization(aug_model,
                                                regularization_coeffs)
                reg_loss = sum(reg_state * coeff for reg_state, coeff in zip(
                    reg_states, regularization_coeffs) if coeff != 0)
                loss = loss + reg_loss

            loss.backward()
            grad_norm = torch.nn.utils.clip_grad_norm_(aug_model.parameters(),
                                                       args.max_grad_norm)
            optimizer.step()

            time_meter.update(time.time() - start)
示例#5
0
def train(args, model, growth_model):
    logger.info(model)
    logger.info("Number of trainable parameters: {}".format(count_parameters(model)))

    #optimizer = optim.Adam(set(model.parameters()) | set(growth_model.parameters()), 
    optimizer = optim.Adam(model.parameters(), 
                           lr=args.lr, weight_decay=args.weight_decay)
    #growth_optimizer = optim.Adam(growth_model.parameters(), lr=args.lr, weight_decay=args.weight_decay)

    time_meter = utils.RunningAverageMeter(0.93)
    loss_meter = utils.RunningAverageMeter(0.93)
    nfef_meter = utils.RunningAverageMeter(0.93)
    nfeb_meter = utils.RunningAverageMeter(0.93)
    tt_meter = utils.RunningAverageMeter(0.93)

    end = time.time()
    best_loss = float('inf')
    model.train()
    growth_model.eval()
    for itr in range(1, args.niters + 1):
        optimizer.zero_grad()
        #growth_optimizer.zero_grad()

        ### Train
        if args.spectral_norm: spectral_norm_power_iteration(model, 1)
        #if args.spectral_norm: spectral_norm_power_iteration(growth_model, 1)

        loss = compute_loss(args, model, growth_model)
        loss_meter.update(loss.item())

        if len(regularization_coeffs) > 0:
            # Only regularize on the last timepoint
            reg_states = get_regularization(model, regularization_coeffs)
            reg_loss = sum(
                reg_state * coeff for reg_state, coeff in zip(reg_states, regularization_coeffs) if coeff != 0
            )
            loss = loss + reg_loss

        #if len(growth_regularization_coeffs) > 0:
        #    growth_reg_states = get_regularization(growth_model, growth_regularization_coeffs)
        #    reg_loss = sum(
        #        reg_state * coeff for reg_state, coeff in zip(growth_reg_states, growth_regularization_coeffs) if coeff != 0
        #    )
        #    loss2 = loss2 + reg_loss

        total_time = count_total_time(model)
        nfe_forward = count_nfe(model)

        loss.backward()
        #loss2.backward()
        optimizer.step()
        #growth_optimizer.step()

        ### Eval
        nfe_total = count_nfe(model)
        nfe_backward = nfe_total - nfe_forward
        nfef_meter.update(nfe_forward)
        nfeb_meter.update(nfe_backward)
        time_meter.update(time.time() - end)
        tt_meter.update(total_time)

        log_message = (
            'Iter {:04d} | Time {:.4f}({:.4f}) | Loss {:.6f}({:.6f}) | NFE Forward {:.0f}({:.1f})'
            ' | NFE Backward {:.0f}({:.1f}) | CNF Time {:.4f}({:.4f})'.format(
                itr, time_meter.val, time_meter.avg, loss_meter.val, loss_meter.avg, nfef_meter.val, nfef_meter.avg,
                nfeb_meter.val, nfeb_meter.avg, tt_meter.val, tt_meter.avg
            )
        )
        if len(regularization_coeffs) > 0:
            log_message = append_regularization_to_log(log_message, regularization_fns, reg_states)

        logger.info(log_message)

        if itr % args.val_freq == 0 or itr == args.niters:
            with torch.no_grad():
                model.eval()
                growth_model.eval()
                test_loss = compute_loss(args, model, growth_model)
                test_nfe = count_nfe(model)
                log_message = '[TEST] Iter {:04d} | Test Loss {:.6f} | NFE {:.0f}'.format(itr, test_loss, test_nfe)
                logger.info(log_message)

                if test_loss.item() < best_loss:
                    best_loss = test_loss.item()
                    utils.makedirs(args.save)
                    torch.save({
                        'args': args,
                        'state_dict': model.state_dict(),
                        'growth_state_dict': growth_model.state_dict(),
                    }, os.path.join(args.save, 'checkpt.pth'))
                model.train()

        if itr % args.viz_freq == 0:
            with torch.no_grad():
                model.eval()
                for i, tp in enumerate(timepoints):
                    p_samples = viz_sampler(tp)
                    sample_fn, density_fn = get_transforms(model, int_tps[:i+1])
                    #growth_sample_fn, growth_density_fn = get_transforms(growth_model, int_tps[:i+1])
                    plt.figure(figsize=(9, 3))
                    visualize_transform(
                        p_samples, torch.randn, standard_normal_logprob, transform=sample_fn, inverse_transform=density_fn,
                        samples=True, npts=100, device=device
                    )
                    fig_filename = os.path.join(args.save, 'figs', '{:04d}_{:01d}.jpg'.format(itr, i))
                    utils.makedirs(os.path.dirname(fig_filename))
                    plt.savefig(fig_filename)
                    plt.close()

                    #visualize_transform(
                    #    p_samples, torch.rand, uniform_logprob, transform=growth_sample_fn, 
                    #    inverse_transform=growth_density_fn,
                    #    samples=True, npts=800, device=device
                    #)

                    #fig_filename = os.path.join(args.save, 'growth_figs', '{:04d}_{:01d}.jpg'.format(itr, i))
                    #utils.makedirs(os.path.dirname(fig_filename))
                    #plt.savefig(fig_filename)
                    #plt.close()
                model.train()

        """
        if itr % args.viz_freq_growth == 0:
            with torch.no_grad():
                growth_model.eval()
                # Visualize growth transform
                growth_filename = os.path.join(args.save, 'growth', '{:04d}.jpg'.format(itr))
                utils.makedirs(os.path.dirname(growth_filename))
                visualize_growth(growth_model, data, labels, npts=200, device=device)
                plt.savefig(growth_filename)
                plt.close()
                growth_model.train()
        """

        end = time.time()
    logger.info('Training has finished.')
示例#6
0
def train(
    device, args, model, growth_model, regularization_coeffs, regularization_fns, logger
):
    optimizer = optim.Adam(
        model.parameters(), lr=args.lr, weight_decay=args.weight_decay
    )

    time_meter = utils.RunningAverageMeter(0.93)
    loss_meter = utils.RunningAverageMeter(0.93)
    nfef_meter = utils.RunningAverageMeter(0.93)
    nfeb_meter = utils.RunningAverageMeter(0.93)
    tt_meter = utils.RunningAverageMeter(0.93)

    full_data = (
        torch.from_numpy(
            args.data.get_data()[args.data.get_times() != args.leaveout_timepoint]
        )
        .type(torch.float32)
        .to(device)
    )

    best_loss = float("inf")
    growth_model.eval()
    end = time.time()
    for itr in range(1, args.niters + 1):
        model.train()
        optimizer.zero_grad()

        # Train
        if args.spectral_norm:
            spectral_norm_power_iteration(model, 1)

        loss = compute_loss(device, args, model, growth_model, logger, full_data)
        loss_meter.update(loss.item())

        if len(regularization_coeffs) > 0:
            # Only regularize on the last timepoint
            reg_states = get_regularization(model, regularization_coeffs)
            reg_loss = sum(
                reg_state * coeff
                for reg_state, coeff in zip(reg_states, regularization_coeffs)
                if coeff != 0
            )
            loss = loss + reg_loss
        total_time = count_total_time(model)
        nfe_forward = count_nfe(model)

        loss.backward()
        optimizer.step()

        # Eval
        nfe_total = count_nfe(model)
        nfe_backward = nfe_total - nfe_forward
        nfef_meter.update(nfe_forward)
        nfeb_meter.update(nfe_backward)
        time_meter.update(time.time() - end)
        tt_meter.update(total_time)

        log_message = (
            "Iter {:04d} | Time {:.4f}({:.4f}) | Loss {:.6f}({:.6f}) |"
            " NFE Forward {:.0f}({:.1f})"
            " | NFE Backward {:.0f}({:.1f})".format(
                itr,
                time_meter.val,
                time_meter.avg,
                loss_meter.val,
                loss_meter.avg,
                nfef_meter.val,
                nfef_meter.avg,
                nfeb_meter.val,
                nfeb_meter.avg,
            )
        )
        if len(regularization_coeffs) > 0:
            log_message = append_regularization_to_log(
                log_message, regularization_fns, reg_states
            )
        logger.info(log_message)

        if itr % args.val_freq == 0 or itr == args.niters:
            with torch.no_grad():
                train_eval(
                    device, args, model, growth_model, itr, best_loss, logger, full_data
                )

        if itr % args.viz_freq == 0:
            if args.data.get_shape()[0] > 2:
                logger.warning("Skipping vis as data dimension is >2")
            else:
                with torch.no_grad():
                    visualize(device, args, model, itr)
        if itr % args.save_freq == 0:
            utils.save_checkpoint(
                {
                    # 'args': args,
                    "state_dict": model.state_dict(),
                    "growth_state_dict": growth_model.state_dict(),
                },
                args.save,
                epoch=itr,
            )
        end = time.time()
    logger.info("Training has finished.")