def main(_): GPU_ID = FLAGS.gpu os.environ[ "CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152 on stackoverflow os.environ["CUDA_VISIBLE_DEVICES"] = str(GPU_ID) RUN = FLAGS.run EXP_DIR = FLAGS.exp_dir SEED = int(FLAGS.seed) ARCH = FLAGS.arch model = Model(arch=ARCH) train_ops = TrainOps(model, EXP_DIR, RUN, ARCH) train_ops.load_exp_config() if FLAGS.mode == 'train': print 'Training' train_ops.train(seed=SEED) if FLAGS.mode == 'test': print 'Testing' train_ops.test()
def main(_): #npr.seed(int(FLAGS.seed)) GPU_ID = FLAGS.gpu os.environ[ "CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152 on stackoverflow os.environ["CUDA_VISIBLE_DEVICES"] = str(GPU_ID) EXP_DIR = FLAGS.exp_dir model = Model() tr_ops = TrainOps(model, EXP_DIR) if 'train' in FLAGS.mode: npr.seed(int(FLAGS.seed)) if FLAGS.mode == 'train_ERM': print 'Training model with standard ERM' tr_ops.load_exp_config() tr_ops.train() if FLAGS.mode == 'train_RDA': print 'Training model with RDA' tr_ops.load_exp_config() tr_ops.train(random_transf=True) if FLAGS.mode == 'train_RSDA': print 'Training model with RSDA' tr_ops.load_exp_config() tr_ops.train_search(search_algorithm='random_search') if FLAGS.mode == 'train_ESDA': print 'Training model with ESDA' tr_ops.load_exp_config() tr_ops.train_search(search_algorithm='evolution_search') elif FLAGS.mode == 'test_all': print 'Testing all' tr_ops.load_exp_config() tr_ops.test_all() elif FLAGS.mode == 'test_RS': print 'Random search' tr_ops.load_exp_config() tr_ops.test_random_search(run=str(FLAGS.run), seed=int(FLAGS.seed), no_iters=int(FLAGS.search_no_iters), string_length=int( FLAGS.transf_string_length)) elif FLAGS.mode == 'test_ES': print 'Evolution search' tr_ops.load_exp_config() tr_ops.test_evolution_search(run=str(FLAGS.run), seed=int(FLAGS.seed), no_iters=int(FLAGS.search_no_iters), string_length=int( FLAGS.transf_string_length), pop_size=int(FLAGS.pop_size), mutation_rate=float(FLAGS.mutation_rate))