def execute_parallel_baseline_1_max_tree(language, train_models=False, is_train_dev_together=True): if (train_models): logging.info('-' * 50) logging.info('Training process started') tp.train_parser_all_lng(language, is_train_dev_together) logging.info('Training process ended') logging.info('-' * 50) logging.info('Noised dependency trees creation started') noise_maker.create_noised_dps_over_all_languages( language, is_train_dev_together) logging.info('Noised dependency trees creation ended') logging.info('-' * 50) logging.info('mst wrapper started') mst_wrapper.mst_wrapper_for_all_languages( language, final_file_name='final_liang_1_best_after_predicted_pos', is_train_dev_together=is_train_dev_together, is_mst=False, given_one_file_repeated_sentnces=False) logging.info('mst wrapper ended') return language + " is ready"
def execute_parallel_baseline_k_best_trees(language,train_models = False,is_train_dev_together=True): if (train_models): logging.info('-'*50) logging.info('Training process started') tp.train_parser_all_lng(language,is_train_dev_together) logging.info('Training process ended') logging.info('-' * 50) logging.info('K-best (liang) dependency trees creation started') noise_maker.create_noised_dps_over_all_languages(specific_languages = language, is_train_dev_together=True, k_best_baseline = 100) logging.info('K-best (liang) dependency trees creation ended') logging.info('-' * 50) logging.info('mst wrapper started') mst_wrapper.mst_wrapper_for_all_languages(language, final_file_name='UAS_liang_Kbest_baseline_k_100_after_predicted_pos', is_train_dev_together = is_train_dev_together, is_mst=True, given_one_file_repeated_sentnces=True) logging.info('mst wrapper ended') logging.info('-' * 50) logging.info('Oracle wrapper started') oracle_wrapper.oracle_wrapper_for_all_languages(language,final_file_name = 'UAS_liang_Kbest_baseline_k_100_after_predicted_pos' ,is_train_dev_together=True) logging.info('Oracle wrapper ended') return language+" is ready"
def execute_parallel(language,eval_method='oracle',train_models = True,find_noise = True,is_oracle_inference_results=True,fixed_noise=False,noise_method='m'): if (train_models): logging.info('-'*50) logging.info('Training process started') tp.train_parser_all_lng(language) logging.info('Training process ended') if (find_noise): logging.info('-' * 50) logging.info('Optimal noise learning started') optimal_n.find_optimal_noise_per_language(eval_method=eval_method,specific_languages=language,noise_method=noise_method) logging.info('Optimal noise learning ended') logging.info('-' * 50) logging.info('Noised dependency trees creation started') noise_maker.create_noised_dps_over_all_languages(language,is_train_dev_together= False,k_best_baseline=False,fixed_noise=fixed_noise,noise_method=noise_method) logging.info('Noised dependency trees creation ended') logging.info('-' * 50) logging.info('mst wrapper started') mst_wrapper.mst_wrapper_for_all_languages(language, final_file_name='UAS_perturbated_MLN_perturbated_after_predicted_pos', is_train_dev_together=False, is_mst=True, given_one_file_repeated_sentnces=False, remove_less_than_k_duplication=False) logging.info('mst wrapper ended') if (is_oracle_inference_results): logging.info('Oracle wrapper started') oracle_wrapper.oracle_wrapper_for_all_languages(language,final_file_name = 'UAS_perturbated_MLN_perturbated_after_predicted_pos' ,is_train_dev_together=False) logging.info('Oracle wrapper ended') return language+" is ready"
def execute(self): logging.info('Execution started') if (self.create_files): logging.info('Strat creating per language files') tp.create_files_per_language() logging.info('Finish creating per language files') if (self.train_models): logging.info('-'*50) logging.info('Training process started') tp.train_parser_all_lng() logging.info('Training process ended') logging.info('-' * 50) logging.info('Optimal noise learning started') optimal_n.find_optimal_noise_per_language() logging.info('Optimal noise learning ended') logging.info('-' * 50) logging.info('Noised dependency trees creation started') noise_maker.create_noised_dps_over_all_languages() logging.info('Noised dependency trees creation ended') logging.info('-' * 50) logging.info('mst wrapper started') mst_wrapper.mst_wrapper_for_all_languages() logging.info('Nmst wrapper ended')
def execute_parallel( language, eval_method='unsupervised_min_sim_between_max_sim_to_1best', train_models=False, find_noise=True, is_oracle_inference_results=True, fixed_noise=False, noise_method='m'): if (train_models): logging.info('-' * 50) logging.info('Training process started') tp.train_parser_all_lng(language, is_train_dev_together, with_words=True) logging.info('Training process ended') if (find_noise and not fixed_noise): logging.info('-' * 50) logging.info('Optimal noise learning started') optimal_n.find_optimal_noise_per_language( eval_method=eval_method, specific_languages=language, noise_method=noise_method, weight_sim_1best=0.5, weight_sim_between=0.5) logging.info('Optimal noise learning ended') logging.info('-' * 50) logging.info('Noised dependency trees creation started') noise_maker.create_noised_dps_over_all_languages( language, is_train_dev_together=False, k_best_baseline=False, fixed_noise=fixed_noise, noise_method=noise_method) logging.info('Noised dependency trees creation ended') logging.info('-' * 50) logging.info('mst wrapper started') mst_wrapper.mst_wrapper_for_all_languages( language, final_file_name='UAS_perturbated_k_100_MLN_FULL_mono_lingual', is_train_dev_together=False, is_mst=True, given_one_file_repeated_sentnces=False) logging.info('mst wrapper ended') if (is_oracle_inference_results): logging.info('Oracle wrapper started') oracle_wrapper.oracle_wrapper_for_all_languages( language, final_file_name='UAS_perturbated_k_100_MLN_FULL_mono_lingual', is_train_dev_together=False) logging.info('Oracle wrapper ended') return language + " is ready"