def main(): # capture the config path from the run arguments # then process the json configuration file try: args = get_args() config = process_config(args.config) except: print("missing or invalid arguments") exit(0) # create the experiments dirs create_dirs([config.summary_dir, config.checkpoint_dir]) # create tensorflow session sess = tf.Session() # create an instance of the model you want model = MyModel(config) # create your data generator data = DataGenerator(config) # create tensorboard logger logger = Logger(sess, config) # create trainer and pass all the previous components to it trainer = SimpleTrainer(sess, model, data, config, logger) # here you train your model trainer.train() trainer.validate()
def main(): # capture the config path from the run arguments # then process the json configuration file try: args = get_args() config = process_config(args.config) except: print("missing or invalid arguments") exit(0) # create the experiments dirs create_dirs([config.summary_dir, config.checkpoint_dir]) # create tensorflow session sess = tf.Session() # create an instance of the model you want model = ExampleModel(config) # create your data generator data = DataGenerator(config) # create tensorboard logger logger = Logger(sess, config) # create trainer and pass all the previous components to it trainer = SimpleTrainer(sess, model, data, config, logger) # here you train your model trainer.train()
def main(): # capture the config path from the run arguments # then process the json configuration file try: args = get_args() config = process_config(args.config) except: print("missing or invalid arguments") exit(0) # create the experiments dirs create_dirs([config.summary_dir, config.checkpoint_dir]) # create tensorflow session sess = tf.Session() # create an instance of the model you want model = MyModel(config) # create your data generator data = DataGenerator(config) # create tensorboard logger logger = Logger(sess, config) # create trainer and pass all the previous components to it trainer = SimpleTrainer(sess, model, data, config, logger) saverExternal = tf.train.Saver(var_list=tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='external')) saverExternal.restore(sess, "experiments/model_8/model8.ckpt_2") # here you train your model trainer.train() trainer.validate()
def main(): cfg = config() print('Loading Data...') data_loader = CaptchaDataLoader(cfg) print('Loading Model...') model = SimpleCaptchaModel(cfg) print('Loading Trainer...') trainer = SimpleTrainer(model.model, data_loader.get_train_data(), cfg) trainer.train()
def main(): modalities = [ DatasetFeaturesSet.VIDEO_SCENE_R2PLUS1_FEATURES, DatasetFeaturesSet.VIDEO_FACE, DatasetFeaturesSet.AUDIO, DatasetFeaturesSet.PULSE, DatasetFeaturesSet.VIDEO_SCENE, ] fusion_types = ['sum', 'concatenation', 'fbp'] for i in range((len(modalities))): for fusion in fusion_types: processor = MultimodalDatasetFeaturesProcessor(modalities_list=modalities[i:]) data_manager = DataManager( tf_record_path=config.DATASET_TF_RECORDS_PATH, batch_size=1) model = MultimodalModel( fusion_type=fusion, modalities_list=modalities[i:], fc_units=64, first_layer=128, second_layer=64, learning_rate=0.0001, cp_dir=config.CHECKPOINT_DIR + "/" + fusion + "_" + modalities[i].name, cp_name=config.CHECKPOINT_NAME ) _, epoch = model.load() trainer = SimpleTrainer( dataset_processor=processor, model=model, data=data_manager, board_path=config.TENSORBOARD_DIR + "/" + fusion + "_" + modalities[i].name, log_freq=config.LOG_AND_SAVE_FREQ_BATCH, num_epochs=2, initial_epoch=epoch, create_dirs_flag=True ) metrics = trainer.train() print(metrics)
def main(): modalities = [ DatasetFeaturesSet.AUDIO, DatasetFeaturesSet.VIDEO_FACE, DatasetFeaturesSet.VIDEO_SCENE, DatasetFeaturesSet.PULSE, DatasetFeaturesSet.VIDEO_SCENE_R2PLUS1_FEATURES ] for modality in modalities: processor = MultimodalDatasetFeaturesProcessor( modalities_list=[modality]) data_manager = DataManager( tf_record_path=config.DATASET_TF_RECORDS_PATH, batch_size=1) model = UnimodalModel( modality=modality, fc_units=64, first_layer=128, second_layer=64, learning_rate=0.001, pretrained_model_path=modality.config.extractor.config. pretrained_path if modality.config.extractor is not None else None, cp_dir=config.CHECKPOINT_DIR, cp_name=config.CHECKPOINT_NAME) _, epoch = model.load() trainer = SimpleTrainer(dataset_processor=processor, model=model, data=data_manager, board_path=config.TENSORBOARD_DIR, log_freq=config.LOG_AND_SAVE_FREQ_BATCH, num_epochs=2, initial_epoch=epoch, create_dirs_flag=True) metrics = trainer.train() print(metrics)
import argparse import yaml from trainers.base_trainer import BaseTrainer from trainers.rgb_only_trainer import RGBOnlyTrainer from trainers.simple_trainer import SimpleTrainer from trainers.local_global_trainer import LocalGlobalTrainer parser = argparse.ArgumentParser() parser.add_argument("--config", type=str, help='path to config file') try: args = parser.parse_args() except IOError as msg: parser.error(str(msg)) with open("configs/" + args.config, 'r') as f: params = yaml.load(f, Loader=yaml.FullLoader) if params["type"] == "simple": trainer = SimpleTrainer(params) elif params["type"] == "local_global": trainer = LocalGlobalTrainer(params) elif params["type"] == "rgb": trainer = RGBOnlyTrainer(params) trainer.train()