def __init__( self, strategy=None, **kwargs ): self.strategy = strategy autoencoder.__init__( self, **kwargs ) self.ONES = tf.ones(shape=[self.batch_size, 1]) self.ZEROS = tf.zeros(shape=[self.batch_size, 1]) self.adversarial_models = { 'generative_discriminator_real': { 'variable': None, 'adversarial_item': 'inference', 'adversarial_value': self.ONES }, 'generative_discriminator_fake': { 'variable': None, 'adversarial_item': 'inference', 'adversarial_value': self.ZEROS }, 'generative_generator_fake': { 'variable': None, 'adversarial_item': 'inference', 'adversarial_value': self.ONES } }
def __init__(self, name, inputs_shape, outputs_shape, latents_dim, variables_params, filepath=None): autoencoder.__init__(self, name=name, inputs_shape=inputs_shape, outputs_shape=outputs_shape, latents_dim=latents_dim, variables_params=variables_params, filepath=filepath, model_fn=create_graph) self.encode_graph = encode_fn
def __init__(self, **kwargs): kwargs['model_fn'] = create_graph kwargs['encode_fn'] = encode_fn autoencoder.__init__(self, **kwargs)
def __init__(self, episode_len, **kwargs): self.episode_len = episode_len basicAE.__init__(self, **kwargs)