def init_img_grid(dataset, input_shape, device, run_dir, log): if not log: return None, None, None grid_size, images, labels = misc.setup_snapshot_img_grid(dataset) misc.save_img_grid(images, os.path.join(run_dir, "reals.png"), drange = [0, 255], grid_size = grid_size) grid_z = torch.randn([labels.shape[0], *input_shape[1:]], device = device) grid_c = torch.from_numpy(labels).to(device) return grid_size, grid_z, grid_c
def training_loop( # Configurations cG={}, cD={}, # Generator and Discriminator command-line arguments dataset_args={}, # dataset.load_dataset() options sched_args={}, # train.TrainingSchedule options vis_args={}, # vis.eval options grid_args={}, # train.setup_snapshot_img_grid() options metric_arg_list=[], # MetricGroup Options tf_config={}, # tflib.init_tf() options eval=False, # Evaluation mode train=False, # Training mode # Data data_dir=None, # Directory to load datasets from total_kimg=25000, # Total length of the training, measured in thousands of real images mirror_augment=False, # Enable mirror augmentation? drange_net=[ -1, 1 ], # Dynamic range used when feeding image data to the networks ratio=1.0, # Image height/width ratio in the dataset # Optimization minibatch_repeats=4, # Number of minibatches to run before adjusting training parameters lazy_regularization=True, # Perform regularization as a separate training step? smoothing_kimg=10.0, # Half-life of the running average of generator weights clip=None, # Clip gradients threshold # Resumption resume_pkl=None, # Network pickle to resume training from, None = train from scratch. resume_kimg=0.0, # Assumed training progress at the beginning # Affects reporting and training schedule resume_time=0.0, # Assumed wallclock time at the beginning, affects reporting recompile=False, # Recompile network from source code (otherwise loads from snapshot) # Logging summarize=True, # Create TensorBoard summaries save_tf_graph=False, # Include full TensorFlow computation graph in the tfevents file? save_weight_histograms=False, # Include weight histograms in the tfevents file? img_snapshot_ticks=3, # How often to save image snapshots? None = disable network_snapshot_ticks=3, # How often to save network snapshots? None = only save networks-final.pkl last_snapshots=10, # Maximal number of prior snapshots to save eval_images_num=50000, # Sample size for the metrics printname="", # Experiment name for logging # Architecture merge=False): # Generate several images and then merge them # Initialize dnnlib and TensorFlow tflib.init_tf(tf_config) num_gpus = dnnlib.submit_config.num_gpus cG.name, cD.name = "g", "d" # Load dataset, configure training scheduler and metrics object dataset = data.load_dataset(data_dir=dnnlib.convert_path(data_dir), verbose=True, **dataset_args) sched = training_schedule(sched_args, cur_nimg=total_kimg * 1000, dataset=dataset) metrics = metric_base.MetricGroup(metric_arg_list) # Construct or load networks with tf.device("/gpu:0"): no_op = tf.no_op() G, D, Gs = None, None, None if resume_pkl is None or recompile: misc.log("Constructing networks...", "white") G = tflib.Network("G", num_channels=dataset.shape[0], resolution=dataset.shape[1], label_size=dataset.label_size, **cG.args) D = tflib.Network("D", num_channels=dataset.shape[0], resolution=dataset.shape[1], label_size=dataset.label_size, **cD.args) Gs = G.clone("Gs") if resume_pkl is not None: G, D, Gs = load_nets(resume_pkl, G, D, Gs, recompile) G.print_layers() D.print_layers() # Train/Evaluate/Visualize # Labels are optional but not essential grid_size, grid_reals, grid_labels = misc.setup_snapshot_img_grid( dataset, **grid_args) misc.save_img_grid(grid_reals, dnnlib.make_run_dir_path("reals.png"), drange=dataset.dynamic_range, grid_size=grid_size) grid_latents = np.random.randn(np.prod(grid_size), *G.input_shape[1:]) if eval: # Save a snapshot of the current network to evaluate pkl = dnnlib.make_run_dir_path("network-eval-snapshot-%06d.pkl" % resume_kimg) misc.save_pkl((G, D, Gs), pkl, remove=False) # Quantitative evaluation metric = metrics.run(pkl, num_imgs=eval_images_num, run_dir=dnnlib.make_run_dir_path(), data_dir=dnnlib.convert_path(data_dir), num_gpus=num_gpus, ratio=ratio, tf_config=tf_config, mirror_augment=mirror_augment) # Qualitative evaluation visualize.eval(G, dataset, batch_size=sched.minibatch_gpu, drange_net=drange_net, ratio=ratio, **vis_args) if not train: dataset.close() exit() # Setup training inputs misc.log("Building TensorFlow graph...", "white") with tf.name_scope("Inputs"), tf.device("/cpu:0"): lrate_in_g = tf.placeholder(tf.float32, name="lrate_in_g", shape=[]) lrate_in_d = tf.placeholder(tf.float32, name="lrate_in_d", shape=[]) step = tf.placeholder(tf.int32, name="step", shape=[]) minibatch_size_in = tf.placeholder(tf.int32, name="minibatch_size_in", shape=[]) minibatch_gpu_in = tf.placeholder(tf.int32, name="minibatch_gpu_in", shape=[]) minibatch_multiplier = minibatch_size_in // (minibatch_gpu_in * num_gpus) beta = 0.5**tf.div(tf.cast(minibatch_size_in, tf.float32), smoothing_kimg * 1000.0) if smoothing_kimg > 0.0 else 0.0 # Set optimizers for cN, lr in [(cG, lrate_in_g), (cD, lrate_in_d)]: set_optimizer(cN, lr, minibatch_multiplier, lazy_regularization, clip) # Build training graph for each GPU data_fetch_ops = [] for gpu in range(num_gpus): with tf.name_scope("GPU%d" % gpu), tf.device("/gpu:%d" % gpu): # Create GPU-specific shadow copies of G and D for cN, N in [(cG, G), (cD, D)]: cN.gpu = N if gpu == 0 else N.clone(N.name + "_shadow") Gs_gpu = Gs if gpu == 0 else Gs.clone(Gs.name + "_shadow") # Fetch training data via temporary variables with tf.name_scope("DataFetch"): reals, labels = dataset.get_minibatch_tf() reals = process_reals(reals, dataset.dynamic_range, drange_net, mirror_augment) reals, reals_fetch = read_data( reals, "reals", [sched.minibatch_gpu] + dataset.shape, minibatch_gpu_in) labels, labels_fetch = read_data( labels, "labels", [sched.minibatch_gpu, dataset.label_size], minibatch_gpu_in) data_fetch_ops += [reals_fetch, labels_fetch] # Evaluate loss functions with tf.name_scope("G_loss"): cG.loss, cG.reg = dnnlib.util.call_func_by_name( G=cG.gpu, D=cD.gpu, dataset=dataset, reals=reals, minibatch_size=minibatch_gpu_in, **cG.loss_args) with tf.name_scope("D_loss"): cD.loss, cD.reg = dnnlib.util.call_func_by_name( G=cG.gpu, D=cD.gpu, dataset=dataset, reals=reals, labels=labels, minibatch_size=minibatch_gpu_in, **cD.loss_args) for cN in [cG, cD]: set_optimizer_ops(cN, lazy_regularization, no_op) # Setup training ops data_fetch_op = tf.group(*data_fetch_ops) for cN in [cG, cD]: cN.train_op = cN.opt.apply_updates() cN.reg_op = cN.reg_opt.apply_updates(allow_no_op=True) Gs_update_op = Gs.setup_as_moving_average_of(G, beta=beta) # Finalize graph with tf.device("/gpu:0"): try: peak_gpu_mem_op = tf.contrib.memory_stats.MaxBytesInUse() except tf.errors.NotFoundError: peak_gpu_mem_op = tf.constant(0) tflib.init_uninitialized_vars() # Tensorboard summaries if summarize: misc.log("Initializing logs...", "white") summary_log = tf.summary.FileWriter(dnnlib.make_run_dir_path()) if save_tf_graph: summary_log.add_graph(tf.get_default_graph()) if save_weight_histograms: G.setup_weight_histograms() D.setup_weight_histograms() # Initialize training misc.log("Training for %d kimg..." % total_kimg, "white") dnnlib.RunContext.get().update("", cur_epoch=resume_kimg, max_epoch=total_kimg) maintenance_time = dnnlib.RunContext.get().get_last_update_interval() cur_tick, running_mb_counter = -1, 0 cur_nimg = int(resume_kimg * 1000) tick_start_nimg = cur_nimg for cN in [cG, cD]: cN.lossvals_agg = { k: None for k in ["loss", "reg", "norm", "reg_norm"] } cN.opt.reset_optimizer_state() # Training loop while cur_nimg < total_kimg * 1000: if dnnlib.RunContext.get().should_stop(): break # Choose training parameters and configure training ops sched = training_schedule(sched_args, cur_nimg=cur_nimg, dataset=dataset) assert sched.minibatch_size % (sched.minibatch_gpu * num_gpus) == 0 dataset.configure(sched.minibatch_gpu) # Run training ops feed_dict = { lrate_in_g: sched.G_lrate, lrate_in_d: sched.D_lrate, minibatch_size_in: sched.minibatch_size, minibatch_gpu_in: sched.minibatch_gpu, step: sched.kimg } # Several iterations before updating training parameters for _repeat in range(minibatch_repeats): rounds = range(0, sched.minibatch_size, sched.minibatch_gpu * num_gpus) for cN in [cG, cD]: cN.run_reg = lazy_regularization and (running_mb_counter % cN.reg_interval == 0) cur_nimg += sched.minibatch_size running_mb_counter += 1 for cN in [cG, cD]: cN.lossvals = { k: None for k in ["loss", "reg", "norm", "reg_norm"] } # Gradient accumulation for _round in rounds: cG.lossvals.update( tflib.run([cG.train_op, cG.ops], feed_dict)[1]) if cG.run_reg: _, cG.lossvals["reg_norm"] = tflib.run( [cG.reg_op, cG.reg_norm], feed_dict) tflib.run(data_fetch_op, feed_dict) cD.lossvals.update( tflib.run([cD.train_op, cD.ops], feed_dict)[1]) if cD.run_reg: _, cD.lossvals["reg_norm"] = tflib.run( [cD.reg_op, cD.reg_norm], feed_dict) tflib.run([Gs_update_op], feed_dict) # Track loss statistics for cN in [cG, cD]: for k in cN.lossvals_agg: cN.lossvals_agg[k] = emaAvg(cN.lossvals_agg[k], cN.lossvals[k]) # Perform maintenance tasks once per tick done = (cur_nimg >= total_kimg * 1000) if cur_tick < 0 or cur_nimg >= tick_start_nimg + sched.tick_kimg * 1000 or done: cur_tick += 1 tick_kimg = (cur_nimg - tick_start_nimg) / 1000.0 tick_start_nimg = cur_nimg tick_time = dnnlib.RunContext.get().get_time_since_last_update() total_time = dnnlib.RunContext.get().get_time_since_start( ) + resume_time # Report progress print( ("tick %s kimg %s loss/reg: G (%s %s) D (%s %s) grad norms: G (%s %s) D (%s %s) " + "time %s sec/kimg %s maxGPU %sGB %s") % (misc.bold("%-5d" % autosummary("Progress/tick", cur_tick)), misc.bcolored( "{:>8.1f}".format( autosummary("Progress/kimg", cur_nimg / 1000.0)), "red"), misc.bcolored("{:>6.3f}".format(cG.lossvals_agg["loss"] or 0), "blue"), misc.bold("{:>6.3f}".format(cG.lossvals_agg["reg"] or 0)), misc.bcolored("{:>6.3f}".format(cD.lossvals_agg["loss"] or 0), "blue"), misc.bold("{:>6.3f}".format(cD.lossvals_agg["reg"] or 0)), misc.cond_bcolored(cG.lossvals_agg["norm"], 20.0, "red"), misc.cond_bcolored(cG.lossvals_agg["reg_norm"], 20.0, "red"), misc.cond_bcolored(cD.lossvals_agg["norm"], 20.0, "red"), misc.cond_bcolored(cD.lossvals_agg["reg_norm"], 20.0, "red"), misc.bold("%-10s" % dnnlib.util.format_time( autosummary("Timing/total_sec", total_time))), "{:>7.2f}".format( autosummary("Timing/sec_per_kimg", tick_time / tick_kimg)), "{:>4.1f}".format( autosummary("Resources/peak_gpu_mem_gb", peak_gpu_mem_op.eval() / 2**30)), printname)) autosummary("Timing/total_hours", total_time / (60.0 * 60.0)) autosummary("Timing/total_days", total_time / (24.0 * 60.0 * 60.0)) # Save snapshots if img_snapshot_ticks is not None and ( cur_tick % img_snapshot_ticks == 0 or done): visualize.eval(G, dataset, batch_size=sched.minibatch_gpu, training=True, step=cur_nimg // 1000, grid_size=grid_size, latents=grid_latents, labels=grid_labels, drange_net=drange_net, ratio=ratio, **vis_args) if network_snapshot_ticks is not None and ( cur_tick % network_snapshot_ticks == 0 or done): pkl = dnnlib.make_run_dir_path("network-snapshot-%06d.pkl" % (cur_nimg // 1000)) misc.save_pkl((G, D, Gs), pkl, remove=False) if cur_tick % network_snapshot_ticks == 0 or done: metric = metrics.run( pkl, num_imgs=eval_images_num, run_dir=dnnlib.make_run_dir_path(), data_dir=dnnlib.convert_path(data_dir), num_gpus=num_gpus, ratio=ratio, tf_config=tf_config, mirror_augment=mirror_augment) if last_snapshots > 0: misc.rm( sorted( glob.glob(dnnlib.make_run_dir_path( "network*.pkl")))[:-last_snapshots]) # Update summaries and RunContext if summarize: metrics.update_autosummaries() tflib.autosummary.save_summaries(summary_log, cur_nimg) dnnlib.RunContext.get().update(None, cur_epoch=cur_nimg // 1000, max_epoch=total_kimg) maintenance_time = dnnlib.RunContext.get( ).get_last_update_interval() - tick_time # Save final snapshot misc.save_pkl((G, D, Gs), dnnlib.make_run_dir_path("network-final.pkl"), remove=False) # All done if summarize: summary_log.close() dataset.close()