示例#1
0
        f"\n\nTraining noise2noise for {n_epochs} epochs with loader {loader_name}"
    )
    for epoch in tqdm.tqdm(range(n_epochs), total=n_epochs):
        # train
        train(net,
              train_loader,
              optimizer,
              LOSS_CRITERION,
              epoch,
              log_interval=25,
              tb_logger=logger,
              device=device)
        step = epoch * len(train_loader.dataset)
        # validate
        validate(net,
                 val_loader,
                 LOSS_CRITERION,
                 EVAL_METRIC,
                 step=step,
                 tb_logger=logger,
                 device=device)
"""## Exercises

1. Train a separete denoising model using clean target and compare the PSNR scores with those obtained with noise2noise model. Compare results of the two models visually in tensorboard.
**Hint** the only change that needs to be done in the loader is changing the noise transformer to return a clean image during training
```
TRAIN_NOISE_TRANSFORM = lambda x: (additive_gaussian_noise_train(x), x)
```
2. Train noise2noise with different noise model, e.g. Poisson noise with varying lambda.
"""
        if len(val_fold_indices) > 0:
            if val_fold_index not in val_fold_indices:
                val_fold_index += 1
                continue

        val_fold_index += 1
        print("\n\n ---- Validation fold index: ", val_fold_index, "/",
              n_folds)

        print(len(train_id_type_list), len(val_id_type_list))
        assert len(to_set(train_id_type_list)
                   & to_set(val_id_type_list)) == 0, "WTF"

        cnn = params['network'](lr=params['lr_kwargs']['lr'],
                                **params,
                                **params['network_kwargs'])
        params['save_prefix'] = params['save_prefix_template'].format(
            cnn_name=cnn.name, fold_index=val_fold_index - 1)
        print("\n {} - Loaded {} model ...".format(datetime.now(), cnn.name))

        load_pretrained_model(cnn, **params)

        params['seed'] += run_counter - 1

        f2, mae = validate(cnn, val_id_type_list, verbose=0, **params)
        cv_mean_scores[run_counter - 1, val_fold_index - 1] = f2

    np.random.shuffle(_trainval_id_type_list)

print(cv_mean_scores)
示例#3
0
def main():
    global best_metrics

    # Parse the arguments
    args = parser.parse_args()

    # Create the SummaryWriter for Tensorboard
    args.writer = SummaryWriter('./logs/tensorboard/{}'.format(args.run_id))

    # Set the RNG seegs
    if args.seed is not None:
        random.seed(args.seed)
        torch.manual_seed(args.seed)
        cudnn.deterministic = True
        warnings.warn('You have chosen to seed training. \
                       This will turn on the CUDNN deterministic setting, \
                       which can slow down your training considerably! \
                       You may see unexpected behavior when restarting \
                       from checkpoints.')

    # Print out the training setup
    print('New training run...\n')
    print('   Run ID:            {}'.format(args.run_id))
    print('   Architecture:      {}'.format(args.arch))
    print('   Batch size:        {}'.format(args.batch_size))
    print('   Learning rate:     {}'.format(args.learning_rate))
    print('   Decay rate:        {}\n'.format(args.decay_rate))

    # Create the model
    print("=> creating model...")
    device = torch.device('cuda')
    model = models.__dict__[args.arch](pretrained=False,
                                       num_classes=args.classes).to(device)

    if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
        model.features = torch.nn.DataParallel(model.features)
        model.cuda()
    else:
        model = torch.nn.DataParallel(model).cuda()

    criterion = nn.CrossEntropyLoss().to(device)
    optimizer = torch.optim.Adam(model.parameters(), args.learning_rate)
    lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
        optimizer, mode='min', factor=args.decay_rate, patience=10)
    cudnn.benchmark = True

    # Create the datasets and loaders
    print('=> creating the datasets and iterators')

    # Create the training dataset and loader
    training_transform = transforms.Compose([
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261))
    ])

    training_dataset = datasets.CIFAR10('./data',
                                        train=True,
                                        download=True,
                                        transform=training_transform)
    training_loader = torch.utils.data.DataLoader(training_dataset,
                                                  batch_size=args.batch_size,
                                                  shuffle=True)

    validation_transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261))
    ])

    validation_dataset = datasets.CIFAR10('./data',
                                          train=False,
                                          transform=validation_transform)
    validation_loader = torch.utils.data.DataLoader(validation_dataset,
                                                    batch_size=args.batch_size,
                                                    shuffle=True)

    # Save the lengths of the data loaders for Tensorboard
    args.train_loader_len = len(training_loader)
    args.validation_loader_len = len(validation_loader)

    # Train the model
    print('=> starting the training\n')
    for epoch in range(args.epochs):
        # Set the current epoch to be used by Tensorboard
        args.current_epoch = epoch

        # Take a training step
        train(training_loader, model, criterion, optimizer, epoch, device,
              args)

        # Evaluate on validation set and check if it is the current best
        val_loss, metrics = validate(validation_loader, model, criterion,
                                     device, args)
        best_metrics, is_best = test_best_metrics(metrics, best_metrics)

        # Take a step using the learning rate scheduler
        lr_scheduler.step(val_loss)

        save_checkpoint(
            {
                'epoch': epoch,
                'state_dict': model.state_dict(),
                'optimizer': optimizer.state_dict(),
                'best_acc': best_metrics[0],
                'best_pre': best_metrics[1],
                'best_rec': best_metrics[2]
            }, is_best, args)

    # Close the Tensorboard writer
    args.writer.close()
        for epoch in tqdm.tqdm(range(n_epochs), total=n_epochs):
            # train
            train(net,
                  train_loader,
                  optimizer,
                  loss_function,
                  epoch,
                  tb_logger=logger,
                  device=device)

            step = epoch * len(train_loader.dataset)
            # validate
            _, acc = validate(net,
                              val_loader,
                              loss_function,
                              metric,
                              step=step,
                              tb_logger=logger,
                              device=device,
                              optimizer=optimizer)

            if acc > best_accuracy:
                best_accuracy = acc
                best_epoch = epoch
                utils.save_checkpoint(net, optimizer, epoch, checkpoint_name)

        images, _ = next(iter(train_loader))
        images = images.to(device)
        grid = torchvision.utils.make_grid(images)
        logger.add_image('images', grid, 0)
        logger.add_graph(net, images)
        logger.close()
示例#5
0
def main():

    total_steps = 0

    results_file = open(RESULTS_WEIGHTS_PATH.joinpath("results.txt"), "w")

    age_criterion = nn.MSELoss()
    sex_criterion = nn.BCELoss()

    age_pred = torch.empty(0).to(DEVICE)
    age_data = torch.empty(0).to(DEVICE)
    sex_pred = torch.empty(0).to(DEVICE)
    sex_data = torch.empty(0).to(DEVICE)

    for i in range(N_FOLDS):
        model = m.Dasnet().to(DEVICE)
        optimizer = torch.optim.Adadelta(model.parameters(),
                                         lr=1.0,
                                         rho=0.95,
                                         eps=1e-06)

        if FIXED_GROUPS:
            training_gen, eval_gen, test_gen = dat_ut.fixed_dataset_generator()
        elif STATIC_TEST:
            training_gen, eval_gen, test_gen = dat_ut.kfold_generator_simple(i)
        else:
            training_gen, eval_gen, test_gen = dat_ut.kfold_generator_simple(i)

        best_epoch_result = [-1, -1, -1, -1]
        best_epoch = 0
        best_epoch_model = dict()
        no_upgrade_cont = 0

        for k in range(1, N_EPOCHS + 1):

            train_ut.train(model, training_gen, age_criterion, sex_criterion,
                           optimizer)
            _, _, _, _, total_loss, age_loss, sex_loss, avg_age_diff, avg_sex_diff = train_ut.validate(
                model, eval_gen, age_criterion, sex_criterion)
            if best_epoch_result[0] >= total_loss or best_epoch_result[0] == -1:
                best_epoch_result = [
                    total_loss, age_loss, sex_loss, avg_age_diff, avg_sex_diff
                ]
                best_epoch_model = model.state_dict()
                best_epoch = k
                no_upgrade_cont = 0

            if best_epoch_result[0] < total_loss:
                no_upgrade_cont += 1

            if no_upgrade_cont == MAX_ITER_NO_IMPROVE:
                print("UPGRADE FIN / EPOCH: {}".format(best_epoch),
                      file=results_file)
                print("FINAL EPOCH: {}".format(k), file=results_file)
                break

        model.load_state_dict(best_epoch_model)

        torch.save(
            model.state_dict(),
            RESULTS_WEIGHTS_PATH.joinpath("model_weights.pth".format(i)))
        age, age_out, sex, sex_out, total_test_loss, age_test_loss, sex_test_loss, avg_age_diff, avg_sex_diff = train_ut.validate(
            model, test_gen, age_criterion, sex_criterion, 'test')

        print(
            "TEST :: TOTAL LOSS = {} \nAGE_LOSS = {} / SEX_LOSS = {} \nAVG_AGE_DIFF = {} / AVG_SEX_DIFF = {}"
            .format(total_test_loss, age_test_loss, sex_test_loss,
                    avg_age_diff, avg_sex_diff),
            file=results_file)

        age_data = torch.cat((age_data, age), 0)
        age_pred = torch.cat((age_pred, age_out), 0)
        sex_data = torch.cat((sex_data, sex), 0)
        sex_pred = torch.cat((sex_pred, sex_out), 0)

        print_metrics(age, age_out, sex, sex_out, results_file)

    save_results(age_data, age_pred, sex_data, sex_pred)
    results_file.close()