示例#1
0
    ## cpu dtype
    dtype = torch.FloatTensor
    save_model_path = "model_state_dict.pkl"
    csv_path = '../../data/train_v2.csv'
    img_path = '../../data/train-jpg'
    img_ext = '.jpg'

    transform_list = [transforms.Scale(224)]
    training_dataset = AmazonDataset(csv_path,
                                     img_path,
                                     img_ext,
                                     dtype,
                                     transform_list=transform_list,
                                     three_band=True)
    ## loader
    train_loader = DataLoader(
        training_dataset,
        batch_size=128,
        shuffle=True,
        num_workers=4,  # 0 for CUDA
    )

    model = torchvision.models.vgg11(pretrained=True)
    model.type(dtype)

    loss_fn = nn.MultiLabelSoftMarginLoss().type(dtype)

    acc, loss = validate_epoch(model, train_loader, loss_fn, dtype)

    print(acc, loss)
示例#2
0
    acc_history = []
    loss_history = []
    ## don't load model params from file - instead retrain the model
    if not from_pickle:
        for epoch in range(num_epochs):
            print("Begin epoch {}/{}".format(epoch + 1, num_epochs))
            epoch_loss = train_epoch(train_loader,
                                     model,
                                     loss_fn,
                                     optimizer,
                                     dtype,
                                     print_every=10)
            scheduler.step(epoch_loss[-1], epoch)
            ## f2 score for validation dataset
            acc = validate_epoch(model, val_loader, dtype)
            acc_history.append(acc)
            loss_history += epoch_loss
            print("END epoch {}/{}: F2 score = {:.02f}".format(
                epoch + 1, num_epochs, acc))
        ## serialize model data and save as .pkl file
        torch.save(model.state_dict(), save_model_path)
        print("model saved as {}".format(os.path.abspath(save_model_path)))
        ## save loss and accuracy as .mat file
        savemat(save_mat_path, {
            "acc": acc_history,
            "loss": loss_history,
            "num_epochs": num_epochs
        })
    ## load model params from file
    else:
示例#3
0
                                      factor=adaptive_lr_factor)

        for epoch in range(1, num_epochs + 1):
            print("Begin epoch {}/{}".format(epoch, num_epochs))
            epoch_losses, epoch_f2 = train_epoch(
                train_loader,
                model,
                loss_fn,
                optimizer,
                dtype,
                sigmoid_threshold=sigmoid_threshold,
                print_every=20)
            scheduler.step(np.mean(epoch_losses), epoch)
            ## f2 score for validation dataset
            f2_acc = validate_epoch(model,
                                    val_loader,
                                    dtype,
                                    sigmoid_threshold=sigmoid_threshold)
            ## store results
            train_acc_history += epoch_f2
            val_acc_history.append(f2_acc)
            loss_history += epoch_losses
            ## overwrite the model .pkl file every epoch
            torch.save(model.state_dict(), save_model_path)
            save_accuracy_and_loss_mat(save_mat_path,
                                       train_acc_history,
                                       val_acc_history,
                                       loss_history,
                                       epoch,
                                       lr=optimizer.param_groups[-1]['lr'])
            ## checkpoints
            if save_every and not epoch % save_every:
示例#4
0
    for param in model.parameters():
        param.requires_grad = False
    for param in model.fc.parameters():
        param.requires_grad = True
    for param in model.conv1.parameters():
        param.requires_grad = True

    loss_fn = nn.MultiLabelSoftMarginLoss().type(dtype)
    optimizer = optim.Adam(chain(model.fc.parameters(),
                                 model.conv1.parameters()),
                           lr=1e-3)
    ## don't load model params from file - instead retrain the model
    if not from_pickle:
        train(train_loader, model, loss_fn, optimizer, dtype, print_every=1)
        ## serialize model data and save as .pkl file
        torch.save(model.state_dict(), save_model_path)
        print("model saved as {}".format(os.path.abspath(save_model_path)))
    ## load model params from file
    else:
        state_dict = torch.load(save_model_path,
                                map_location=lambda storage, loc: storage)
        model.load_state_dict(state_dict)
        print("model loaded from {}".format(os.path.abspath(save_model_path)))

    train_acc_loader = DataLoader(training_dataset,
                                  batch_size=200,
                                  shuffle=True,
                                  num_workers=6)
    acc = validate_epoch(model, train_acc_loader, dtype)
    print(acc)